
Latent space prototype interpretability:
Strengths and shortcomings

Giorgia Pitteri
September 28, 2023

Table of contents

1. Introduction

2. Prototypical Part Network

3. Neural Prototype Tree

4. Shortcomings

5. Recent improvement

1

Introduction

Interpretability, why?

• Deep Neural Networks are very powerful but black boxes

• Why should we trust these models for high stake decisions?

• Decision trees or linear classifiers are intrinsically interpretable but
not very powerful

The goal is to define a form of interpretability in image processing sim-
ilar to the way humans describe their thinking in classification tasks.

2

Interpretability, why?

• Explaining a model with post-hoc explanations, such as saliency maps,
doesn’t work [6]

• Part-based attention methods expose the parts of an input image the
network focuses on when making decisions but not the relationship to
prototypical cases

3

Prototypical Part Network

Proto P-Net [1]

• Stop explaining a black box model −→ create an interpretable model!

• Focus on fine-grained image recognition task

• How would you classify the bird in the picture as a clay colored
sparrow?

4

Proto P-Net

• Stop explaining a black box model −→ create an interpretable model!

• Focus on fine-grained image recognition task

• How would you classify the bird in the picture as a clay colored
sparrow?

5

Proto P-Net

• Stop explaining a black box model −→ create an interpretable model!

• Focus on fine-grained image recognition task

• How would you classify the bird in the picture as a clay colored
sparrow?

6

Proto P-Net

• Stop explaining a black box model −→ create an interpretable model!

• Focus on fine-grained image recognition task

• How would you classify the bird in the picture as a clay colored
sparrow?

7

Proto P-Net

• Stop explaining a black box model −→ create an interpretable model!

• Focus on fine-grained image recognitionn task

• How would you classify the bird in the picture as a clay colored
sparrow?

8

Proto P-Net

• A regular CNN with an additional 1x1 convolutional layer on top to
extract a latent representation z ∈ RHxWxD

9

Proto P-Net

• A prototype layer gp is added for interpretability.

• The network learns m prototypes per class of dimensions H1xW1xD,
where D is the same dimension as the convolutional output

• A prototype can be seen as the latent representation of an image patch

10

Proto P-Net

• Each unit gpi in the prototype layer computes the L2 distances between
all latent patches and prototype pj and inverts the distances in
similarity scores

• An activation map of similarity scores is obtained for each prototype
and it indicates how strong a prototypical part is present in the image

• The activation maps are reduced to a single similarity score by max
pooling

11

Proto P-Net

• A fully connected layer multiplies each m similarity score with the
weight matrix Wh to obtain the logits

• A final softmax layer normalize the logits to get the class probabilities

12

Training algorithm

The training of ProtoPNet is divided into three steps:

1. Stochastic Gradient Descend of layers before the last one

2. Projection of prototypes

3. Convex optimization of last layer

13

Training algorithm - 1

• Convolutional layers wconv and prototypes P = {pj}mj=1 are trained
together by optimizing:

min
P,wconv

1
n

n∑
i=1

CrsEnt(h ◦ gp ◦ f(xi), yi) + λ1Clst+ λ2Sep

14

Training algorithm - 1

• Convolutional layers wconv and prototypes P = {pj}mj=1 are trained
together by optimizing:

min
P,wconv

1
n

n∑
i=1

CrsEnt(h ◦ gp ◦ f(xi), yi) + λ1Clst + λ2Sep

• Cluster cost: each training image should have a latent patch similar to
at least one prototype of its own class

Clst = 1
n

n∑
i=1

minj:pj∈Pyi minz∈patches(f(xi))
||z− pj||22

15

Training algorithm - 1

• Convolutional layers wconv and prototypes P = {pj}mj=1 are trained
together by optimizing:

min
P,wconv

1
n

n∑
i=1

CrsEnt(h ◦ gp ◦ f(xi), yi) + λ1Clst+ λ2Sep

• Cluster cost:

Clst = 1
n

n∑
i=1

minj:pj∈Pyi minz∈patches(f(xi))
||z− pj||22

• Separation cost: each training image should have all latent patches
away from the prototypes of the other classes

Sep = − 1n

n∑
i=1

minj:pj /∈Pyi minz∈patches(f(xi))
||z− pj||22

16

Training algorithm - 1

• Convolutional layers wconv and prototypes P = {pj}mj=1 are trained
together by optimizing:

min
P,wconv

1
n

n∑
i=1

CrsEnt(h ◦ gp ◦ f(xi), yi) + λ1Clst+ λ2Sep

• Cluster cost:

Clst = 1
n

n∑
i=1

minj:pj∈Pyi minz∈patches(f(xi))
||z− pj||22

• Separation cost:

Sep = − 1n

n∑
i=1

minj:pj /∈Pyi minz∈patches(f(xi))
||z− pj||22

• The last layer wh is fixed:

w(k,j)
h = 1 ∀ j with pj ∈ Pk and w(k,j)

h = −0.5 ∀ j with pj /∈ Pk

17

Training algorithm - 2

• Each prototype is projected into the nearest latent training patch with
the following update step:

pj ← argminz∈Zj ||z− pj||2

• A prototype can be visualized as a training patch

• This prototype projection step doesn’t change the prediction accuracy
of ProtoPNet and it is done every 10 epochs during the training

18

Training algorithm -3

• Last linear classifier optimization:

min
wh

1
n

n∑
i=1

CrsEnt(h ◦ gp ◦ f(xi), yi) + λ

K∑
k=1

∑
j:Pj /∈Pk

|w(k,j)
h |

• Parameters from the convolutional layers and prototypes are fixed

• For each class, a L1 regularization term penalizes the prototypes that
don’t belong to the class.

• The model relies less on ”negative” reasoning process thanks to the
sparsity property:

w(k,j)
h ≈ 0 for k and j with pj /∈ Pk

19

Reasoning process

• Why is this bird classified as a red-bellied woodpecker?

20

Reasoning process

21

Reasoning process

22

Results

• Loss of accuracy at most 3.5%

23

Results

• Loss of accuracy at most 3.5%

• Accuracy can also be improved by combining multiple ProtoPNet
models

• Comparison with part-level attentions methods

24

Neural Prototype Tree

Proto Tree [5]

• A Neural Prototype Tree (ProtoTree) combines prototypes learning and
a decision binary tree

• A single prediction is explained by outlining a decision path through
the tree (global explanation)

• ”Guess who?” game: binary questions to underline visual properties to
predict the class of the input image

• https://github.com/aai-institute/ProtoTree/tree/main

25

https://github.com/aai-institute/ProtoTree/tree/main

Architecture

• A CNN extracts a feature maps z of dimension HxWxD

• This latent representation z is the input to a soft binary tree (both
children of a node are always visited)

26

Architecture

• Each node of the tree is a trainable prototype pn of dimension H1xW1xD
• The L2 distance is computed between each prototype and all the
patches z̃ of the latent representation.

• Min pooling operation to select the closest latent patch z̃∗

• z is routed through both children with probabilities:

pe(n,n.right)(z) = exp(−||z̃∗ − pn||)

pe(n,nleft) = 1− pe(n,n.right)

27

Architecture

• Each leaf is reached with probability equals to the product of
probabilities of the edges of the followed path:

πl(z) = Πe∈Plpe((z))

• A sigmoid function is applied to the trainable parameter of each leaf to
get the final class distribution:

ŷ(x) =
∑
l∈L

σ(cl) · π(f(x;w))

28

Proto Tree Training

The training of a ProtoTree follows these steps:

• Prototypes P and parameters w of the CNN are trained together by
minimizing the cross entropy loss between the class probability
distribution ỹ and the ground-truth y

• P and w are then updated with gradient descent

• We update leaves distribution with a derivative-free strategy:

c(t+1)l =
∑
x,y∈T

(σ(c(t)l)⊙ y⊙ πl)⊘ ŷ

29

Pruning

• Pruning operation to reduce the
number of prototypes and
augment interpretability

• All leaves with a distribution
similar to a uniform one are
removed

max(σ(cl)) ≤ τ

• If all leaves of a subtree are
pruned, then the subtree is
removed

• The tree is then reorganized by
removing the superflous parent
of the removed subtree

w�

30

ProtoTree Height

• A model with fewer prototypes is easier to interprete but represent a
less complex model with less predictive power

• Need to select a right value for h, the height of the tree

• The initial value for h such that the number of leaves is at least as
large as the number of classes.

31

Reasoning

• Visualization of a subtree of a ProtoTree
• For each node: the prototype and the image from which the prototype
is extracted

32

Results

• Higher accuracy then ProtoPNet

• ProtoTree is almost 90% smaller
(1 prototype per class against 10
of ProtoPNet) and easier to
interpret

• ProtoTree reveals biases learned
by the model, where some
prototypes focus on the
background.

33

Shortcomings

Looks like that, does it?

• For a human-interpretable model this statement must hold:

Two image patches look similar to a ProtoPNet ⇐⇒ Two image
patches look similar to a human

• Semantic gap between image space and latent space

34

Looks like that, Does it? [2]

Head on Stomach experiment

• One of the most activated
prototype pl is taken into
consideration

• The image is perturbed (with
very small noise) such that the
network finds pl in a different
location with high similarity in a
non-sensical place

35

Looks like that, Does it? [2]

JPEG compression experiment

• Training images of half of the
classes are compressed

• The similarity score of the
compressed version of an image
(x̄) from a compressed class that
is classified correctly by
ProtoPNet is recorded

• This score is then compared with
the one obtained by passing the
original image (x) to ProtoPNet

• If the scores are very different, it
means ProtoPNet doesn’t
consider x and x̄ similar as
humans would

•

36

Looks like that, Because... [4]

• Prototypes alone are not enough, they need to be explained
• Visual textual information is added to each prototype regarding visual
features:

hue, contrast, saturation, shape, texture

• Useful to understand misleading prototypes and redundancy

37

Looks like that, Because... [4]

• A set of modified images is created for each visual feature

• Local score for test image k, prototype j and transformation i:

ϕi,j,klocal = gj,k − ĝi,j,k

• Global score for a prototype j and transformation i (obtained from the
training dataset)

ϕi,jglobal =

∑|Strain|
k=1 ϕi,j,klocal · gj,k∑|Strain|

k=1 gj,k

38

Recent improvement

Improvement of Interpretability with SA and SDFA [3]

• Need of a benchmark to quantitatively evaluate the interpretability of
prototypes

• Evalutation metrics based on two problems:

• inconsistency: a prototype may mistakenly correspond to different object
parts in different images

• instability: a prototype may mistakenly correspond to different object
parts in the original image and the slightly perturbed image

39

Improvement of Interpretability with SA and SDFA [3]

• The dataset needs to have object parts annotations
• Consistency score:

• Consider a prototype of class k and all the test images of that class
• For each image, compute a binary vector: 1 if an object part is inside the
prototype activation region, 0 otherwise

• Take the average of all these binary vectors
• If the maximum element is higher than a threshold the prototype is
consistent

• Take the ratio between the number of consistent prototypes and the total
number of prototypes as the consistency score

40

Improvement of Interpretability with SA and SDFA [3]

• Stability score:
• Consider a prototype of class k and all the test images of that class
• For each image, compute the binary vector for the original version and the
perturbeted one

• If these binary vector are equals, the prototype is stable
• Take the ratio between the number of stable prototypes and the total
number of prototypes as the stability score

41

Improvement of Interpretability with SA and SDFA [3]

• Shallow Deep Features Alignement (SDFA) module: incorporated
spatial information from shallow layers is in the deep feature maps

• Similarity structure t ∈ RHWxHW of a feature map z ∈ RHxWxD can be used
to compare two representations

• A loss term is added during the training to enforce these spatial
structures to be similar

42

Improvement of Interpretability with SA and SDFA [3]

• Score Aggregation (SA) module: the activation values of prototypes are
allocated into their categories

• Because of the last fully connected layer of ProtoPNet, the
classification score depends also on the prototypes of other classes

• The similarity scores of the prototypes are aggregated into their classes
• A learnable layer adjust the importance of each prototypes for each
class prototypes.

43

Conclusions

• Start using interpretable models for high stake decisions instead of
black boxes!

• Prototypical learning gives a form of interpretability, this part looks
like that!

• There still are some shortcomings

• Recent improvement of ProtoPNet and first attempt to create a
benchmark for interpretability

44

Thank you!

45

References

C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, and C. Rudin.
This looks like That: Deep learning for interpretable image recognition.
NeurIPS, 2019.

A. Hoffmann, C. Fanconi, R. Rade, and J. Kohler.
This looks like that... does it? shortcomings of latent space prototype interpretability in deep networks.
ICMLW, 2021.

Q. Huang, M. Xue, W. Huang, H. Zhang, J. Song, Y. Jing, and M. Song.
Evaluation and improvement of interpretability for self-explainable part-prototype networks.
ArXiv, 2023.

M. Nauta, A. J. J. Provoost, and C. Seifert.
This looks like that, because ... explaining prototypes for interpretable image recognition.
XKDD, 2021.

M. Nauta, R. van Bree, and C. Seifert.
Neural prototype trees for interpretable fine-grained image recognition.
CVPR, 2021.

C. Rudin.
Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.
Nature, 2019.

46

	Introduction
	Prototypical Part Network
	Neural Prototype Tree
	Shortcomings
	Recent improvement

