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Introduction



Interpretability, why?

• Deep Neural Networks are very powerful but black boxes

• Why should we trust these models for high stake decisions?

• Decision trees or linear classifiers are intrinsically interpretable but
not very powerful

The goal is to define a form of interpretability in image processing sim-
ilar to the way humans describe their thinking in classification tasks.
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Interpretability, why?

• Explaining a model with post-hoc explanations, such as saliency maps,
doesn’t work [6]

• Part-based attention methods expose the parts of an input image the
network focuses on when making decisions but not the relationship to
prototypical cases
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Prototypical Part Network



Proto P-Net [1]

• Stop explaining a black box model −→ create an interpretable model!

• Focus on fine-grained image recognition task

• How would you classify the bird in the picture as a clay colored
sparrow?
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Proto P-Net

• Stop explaining a black box model −→ create an interpretable model!

• Focus on fine-grained image recognitionn task

• How would you classify the bird in the picture as a clay colored
sparrow?
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Proto P-Net

• A regular CNN with an additional 1x1 convolutional layer on top to
extract a latent representation z ∈ RHxWxD
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Proto P-Net

• A prototype layer gp is added for interpretability.

• The network learns m prototypes per class of dimensions H1xW1xD,
where D is the same dimension as the convolutional output

• A prototype can be seen as the latent representation of an image patch
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Proto P-Net

• Each unit gpi in the prototype layer computes the L2 distances between
all latent patches and prototype pj and inverts the distances in
similarity scores

• An activation map of similarity scores is obtained for each prototype
and it indicates how strong a prototypical part is present in the image

• The activation maps are reduced to a single similarity score by max
pooling
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Proto P-Net

• A fully connected layer multiplies each m similarity score with the
weight matrix Wh to obtain the logits

• A final softmax layer normalize the logits to get the class probabilities
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Training algorithm

The training of ProtoPNet is divided into three steps:

1. Stochastic Gradient Descend of layers before the last one

2. Projection of prototypes

3. Convex optimization of last layer
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Training algorithm - 1

• Convolutional layers wconv and prototypes P = {pj}mj=1 are trained
together by optimizing:

min
P,wconv

1
n

n∑
i=1

CrsEnt(h ◦ gp ◦ f(xi), yi) + λ1Clst+ λ2Sep
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Training algorithm - 1

• Convolutional layers wconv and prototypes P = {pj}mj=1 are trained
together by optimizing:

min
P,wconv

1
n

n∑
i=1

CrsEnt(h ◦ gp ◦ f(xi), yi) + λ1Clst + λ2Sep

• Cluster cost: each training image should have a latent patch similar to
at least one prototype of its own class

Clst = 1
n

n∑
i=1

minj:pj∈Pyi minz∈patches(f(xi))
||z− pj||22
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Training algorithm - 1

• Convolutional layers wconv and prototypes P = {pj}mj=1 are trained
together by optimizing:

min
P,wconv

1
n

n∑
i=1

CrsEnt(h ◦ gp ◦ f(xi), yi) + λ1Clst+ λ2Sep

• Cluster cost:

Clst = 1
n

n∑
i=1

minj:pj∈Pyi minz∈patches(f(xi))
||z− pj||22

• Separation cost: each training image should have all latent patches
away from the prototypes of the other classes

Sep = − 1n

n∑
i=1

minj:pj /∈Pyi minz∈patches(f(xi))
||z− pj||22
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Training algorithm - 1

• Convolutional layers wconv and prototypes P = {pj}mj=1 are trained
together by optimizing:

min
P,wconv

1
n

n∑
i=1

CrsEnt(h ◦ gp ◦ f(xi), yi) + λ1Clst+ λ2Sep

• Cluster cost:

Clst = 1
n

n∑
i=1

minj:pj∈Pyi minz∈patches(f(xi))
||z− pj||22

• Separation cost:

Sep = − 1n

n∑
i=1

minj:pj /∈Pyi minz∈patches(f(xi))
||z− pj||22

• The last layer wh is fixed:

w(k,j)
h = 1 ∀ j with pj ∈ Pk and w(k,j)

h = −0.5 ∀ j with pj /∈ Pk
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Training algorithm - 2

• Each prototype is projected into the nearest latent training patch with
the following update step:

pj ← argminz∈Zj ||z− pj||2

• A prototype can be visualized as a training patch

• This prototype projection step doesn’t change the prediction accuracy
of ProtoPNet and it is done every 10 epochs during the training
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Training algorithm -3

• Last linear classifier optimization:

min
wh

1
n

n∑
i=1

CrsEnt(h ◦ gp ◦ f(xi), yi) + λ

K∑
k=1

∑
j:Pj /∈Pk

|w(k,j)
h |

• Parameters from the convolutional layers and prototypes are fixed

• For each class, a L1 regularization term penalizes the prototypes that
don’t belong to the class.

• The model relies less on ”negative” reasoning process thanks to the
sparsity property:

w(k,j)
h ≈ 0 for k and j with pj /∈ Pk
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Reasoning process

• Why is this bird classified as a red-bellied woodpecker?
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Reasoning process
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Reasoning process
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Results

• Loss of accuracy at most 3.5%
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Results

• Loss of accuracy at most 3.5%

• Accuracy can also be improved by combining multiple ProtoPNet
models

• Comparison with part-level attentions methods
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Neural Prototype Tree



Proto Tree [5]

• A Neural Prototype Tree (ProtoTree) combines prototypes learning and
a decision binary tree

• A single prediction is explained by outlining a decision path through
the tree (global explanation)

• ”Guess who?” game: binary questions to underline visual properties to
predict the class of the input image

• https://github.com/aai-institute/ProtoTree/tree/main
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Architecture

• A CNN extracts a feature maps z of dimension HxWxD

• This latent representation z is the input to a soft binary tree (both
children of a node are always visited)
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Architecture

• Each node of the tree is a trainable prototype pn of dimension H1xW1xD
• The L2 distance is computed between each prototype and all the
patches z̃ of the latent representation.

• Min pooling operation to select the closest latent patch z̃∗

• z is routed through both children with probabilities:

pe(n,n.right)(z) = exp(−||z̃∗ − pn||)

pe(n,nleft) = 1− pe(n,n.right)
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Architecture

• Each leaf is reached with probability equals to the product of
probabilities of the edges of the followed path:

πl(z) = Πe∈Plpe((z))

• A sigmoid function is applied to the trainable parameter of each leaf to
get the final class distribution:

ŷ(x) =
∑
l∈L

σ(cl) · π(f(x;w))
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Proto Tree Training

The training of a ProtoTree follows these steps:

• Prototypes P and parameters w of the CNN are trained together by
minimizing the cross entropy loss between the class probability
distribution ỹ and the ground-truth y

• P and w are then updated with gradient descent

• We update leaves distribution with a derivative-free strategy:

c(t+1)l =
∑
x,y∈T

(σ(c(t)l )⊙ y⊙ πl)⊘ ŷ
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Pruning

• Pruning operation to reduce the
number of prototypes and
augment interpretability

• All leaves with a distribution
similar to a uniform one are
removed

max(σ(cl)) ≤ τ

• If all leaves of a subtree are
pruned, then the subtree is
removed

• The tree is then reorganized by
removing the superflous parent
of the removed subtree

w�
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ProtoTree Height

• A model with fewer prototypes is easier to interprete but represent a
less complex model with less predictive power

• Need to select a right value for h, the height of the tree

• The initial value for h such that the number of leaves is at least as
large as the number of classes.
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Reasoning

• Visualization of a subtree of a ProtoTree
• For each node: the prototype and the image from which the prototype
is extracted
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Results

• Higher accuracy then ProtoPNet

• ProtoTree is almost 90% smaller
(1 prototype per class against 10
of ProtoPNet) and easier to
interpret

• ProtoTree reveals biases learned
by the model, where some
prototypes focus on the
background.
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Shortcomings



Looks like that, does it?

• For a human-interpretable model this statement must hold:

Two image patches look similar to a ProtoPNet ⇐⇒ Two image
patches look similar to a human

• Semantic gap between image space and latent space
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Looks like that, Does it? [2]

Head on Stomach experiment

• One of the most activated
prototype pl is taken into
consideration

• The image is perturbed (with
very small noise) such that the
network finds pl in a different
location with high similarity in a
non-sensical place
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Looks like that, Does it? [2]

JPEG compression experiment

• Training images of half of the
classes are compressed

• The similarity score of the
compressed version of an image
(x̄) from a compressed class that
is classified correctly by
ProtoPNet is recorded

• This score is then compared with
the one obtained by passing the
original image (x) to ProtoPNet

• If the scores are very different, it
means ProtoPNet doesn’t
consider x and x̄ similar as
humans would

•
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Looks like that, Because... [4]

• Prototypes alone are not enough, they need to be explained
• Visual textual information is added to each prototype regarding visual
features:

hue, contrast, saturation, shape, texture

• Useful to understand misleading prototypes and redundancy
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Looks like that, Because... [4]

• A set of modified images is created for each visual feature

• Local score for test image k, prototype j and transformation i:

ϕi,j,klocal = gj,k − ĝi,j,k

• Global score for a prototype j and transformation i (obtained from the
training dataset)

ϕi,jglobal =

∑|Strain|
k=1 ϕi,j,klocal · gj,k∑|Strain|

k=1 gj,k
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Recent improvement



Improvement of Interpretability with SA and SDFA [3]

• Need of a benchmark to quantitatively evaluate the interpretability of
prototypes

• Evalutation metrics based on two problems:

• inconsistency: a prototype may mistakenly correspond to different object
parts in different images

• instability: a prototype may mistakenly correspond to different object
parts in the original image and the slightly perturbed image
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Improvement of Interpretability with SA and SDFA [3]

• The dataset needs to have object parts annotations
• Consistency score:

• Consider a prototype of class k and all the test images of that class
• For each image, compute a binary vector: 1 if an object part is inside the
prototype activation region, 0 otherwise

• Take the average of all these binary vectors
• If the maximum element is higher than a threshold the prototype is
consistent

• Take the ratio between the number of consistent prototypes and the total
number of prototypes as the consistency score
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Improvement of Interpretability with SA and SDFA [3]

• Stability score:
• Consider a prototype of class k and all the test images of that class
• For each image, compute the binary vector for the original version and the
perturbeted one

• If these binary vector are equals, the prototype is stable
• Take the ratio between the number of stable prototypes and the total
number of prototypes as the stability score
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Improvement of Interpretability with SA and SDFA [3]

• Shallow Deep Features Alignement (SDFA) module: incorporated
spatial information from shallow layers is in the deep feature maps

• Similarity structure t ∈ RHWxHW of a feature map z ∈ RHxWxD can be used
to compare two representations

• A loss term is added during the training to enforce these spatial
structures to be similar
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Improvement of Interpretability with SA and SDFA [3]

• Score Aggregation (SA) module: the activation values of prototypes are
allocated into their categories

• Because of the last fully connected layer of ProtoPNet, the
classification score depends also on the prototypes of other classes

• The similarity scores of the prototypes are aggregated into their classes
• A learnable layer adjust the importance of each prototypes for each
class prototypes.
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Conclusions

• Start using interpretable models for high stake decisions instead of
black boxes!

• Prototypical learning gives a form of interpretability, this part looks
like that!

• There still are some shortcomings

• Recent improvement of ProtoPNet and first attempt to create a
benchmark for interpretability

44



Thank you!
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