Influence Functions and Data
Pruning

A - Perceptron in teacher-student setting

— Theory
e Simulation

é S < :‘:)

Frac. data kept S \‘\;\\“
® 100% \H
® 77% Pareto \\
® 60% frontier |\
® 46% ,
® 36%
® 28%
® 22%
®17%

13%

10%

X
o
= 10
7]
]
0
|_

1 2 3
Training examples per parameter (X¥prune)

From theory to non-convergence and applications

Overview

Part 1: Influence functions
1. What are influence functions?

2. Issues with convergence

Part 2. Towards data efficiency

3. What Neural networks memorise and why?

4. Data pruning in model training

Data valuation

. Evaluates the samples that have the highest impact on model
training
. To each training sample, it associates a score

e Bad samples (e.g. mislabelled images) should have bad scores

Data valuation

. Evaluates the samples that have the highest impact on model
training
. To each training sample, it associates a score

e Bad samples (e.g. mislabelled images) should have bad scores

Influence functions

Understanding Black-box Predictions via Influence Functions

Pang Wei Koh! Percy Liang !

First introduced for “robust statistics” in the 70s
Popularised for neural networks in 2017 by Koh & Lang

They try to assess the effect of each single training point on the
accuracy of a model

They fall under the umbrella of Explainable Al, with some
important remarks

Influence functions: notation

Let’s start with the following definitions:
« zZi= (x;, yi) is the j-th training sample

- Ois the (potentially highly) multi-dimensional array of parameters of the NN

- L(z, 6) is the loss of the model for point z and parameters 6.

Influence functions: notation

Let's start with the following definitions:
Zi= (xi, yi) is the i-th training sample
0 is the (potentially highly) multi-dimensional array of parameters of the NN

L(z, 6) is the loss of the model for point z and parameters 6.

A

1 n
Model training => @ = arg min — L(z:. 60
g g D n ; (za)

One way to quantify the effect of training point z on the model is to compare it with

0 1
Model training 0 . — aremin — L(z;,0
without z =>) 0 n ;éz (2:,0)

Influence functions: naive definition

We want to quantify the influence of a training sample z on the accuracy of the model
(with parameters 6) on a test sample zwst. One naive definition would be:

I(Z, ztest) — L(ztest, é—z) — L(ztesta é)

For most practical applications, this approach is not viable because it entails re-
training the model several hundred times!

Influence functions: local approximation

When re-training the model is not possible, we need to rely on local analysis.

Let's consider the model trained with the sample z having € more weight
than the other points

A

1 n
oez: in — L iag L ,0)
2 = argmin ; (2;,0) + €L(z,0)

As € — 0, a first order account of the effect of z on zwst can be defined as

dL(ztest) ée,z)
de e=0

Iup(z, ztest) —

Influence functions: local approximation

After a few algebraic steps, one finds that the new (local) influence function
definition is equal to

Iup(za ztest) — VGL(ztesta é)T Hé_l VOL(za é)

Hessian of the model =>

Influence functions: local approximation

After a few algebraic steps, one finds that the new (local) influence function
definition is equal to

Iup(Z, ztest) — VHL(Ztesta é)T Hé_l VOL(za é)

Hessian of the model =>

Important Notes:

All terms are gradients wrt. 8 and can be calculated through backpropagation!

- Calculating the Hessian is a huge problem. H is a big matrix, which also needs to be
iInverted.

Influence functions: interpretation

Influence values have a simple interpretation:

they tell you how much the loss of a model on a test point zw.st decreases if the point z
IS given more weight during training

Influence functions: interpretation

Influence values have a simple interpretation:

they tell you how much the loss of a model on a test point ziest decreases if the point z
IS given more weight during training

Lowest (left) and highest (right) influences

Let’s pick an example from our library pyDVL.: img influence: -13.429377 img influence: 8.834409
. g . . T ‘ ,. -
Image classification with Resnet18

Ztest

Influences

img influence: 13.232218

o 11T

They are only partially explainable

Influence functions: issues

- Inverting the Hessian is often very expensive

- |t is also often not well defined => NN models are not convex!

Influence functions: issues

- Inverting the Hessian is often very expensive

- |t is also often not well defined => NN models are not convex!

There are several available workarounds:

For inversion
=> use approximate techniques (e.g. conjugate gradient)

y=Ya

Influence functions: issues

- Inverting the Hessian is often very expensive

- |t is also often not well defined => NN models are not convex!

There are several available workarounds:

For inversion
=> use approximate techniques (e.g. conjugate gradient)

For non convexity

=> add a perturbation term Hé + Al

For more details come to our upcoming seminar!

Influence Diagnostics under Self-concordance

Jillian Fisher! Lang Liu! Krishna Pillutla! Yejin Choi' 2 Zaid Harchaoui'!
University of Washington® Allen Institute for Artificial Intelligence?

Influence functions: issues

INFLUENCE FUNCTIONS IN DEEP LEARNING
ARE FRAGILE

Samyadeep Basu; Phillip Pope "& Soheil Feizi
Department of Computer Science

University of Maryland, College Park

{sbasul2, pepope,sfeizi}@cs.umd.edu

1. How similar is the local approximation to the initial
leave-one-out definition?

2 How does it depend on network architecture?

Influence functions: issues

Let's compare the correlation of parameter changes

Norm Of Approximate
Parameter Change

Spearman Correlation

~ With Weight-Decay

4 UL

Nor;n‘Of Exact Pararﬁeter Change

Correlation Decreases With Depth

1
4

Nljmbér of ﬂaye;s

Spearman Correlation

Without Weight-Decay

Norm Of Approximate
Parameter Change

104 .
(¢ |

Norm Of Exact Paramete} Change

Correlation Decreases With Width

1

Width Of Layérs

Influence functions: issues

With Top Influential Points With Points At 30 Percentile Of Influence Scores

- c
S e}
R — b —
© ©
(O] ()
= =0
O O
O &)

o—o Pearson(Weight-Decay) “[| e Pearson(Weight-Decay)

e—e Spearman(Weight-Decay) e—e Spearman(Weight-Decay)

o -o Pearson(No Weight-Decay) o - Pearson(No Weight-Decay)
e - Spearman(No Weight-Decay) e - Spearman(No Weight-Decay)

2 3 4 5 ' 2 3 4 5
Different Test-Points Different Test-Points

The approximation is better for highly influential points!

Influence values may not be reliable
influence rankings might be!

Conclusions to part 1

Influence functions estimate sample impact on model accuracy

Their calculation entails several model re-trainings

Local approximations are more efficient, but still expensive

With larger models, influence values are more noisy

i\ ¥

- Alot of recent work on more efficient computation

Conclusions to part 1

Influence functions estimate sample impact on model accuracy

Their calculation entails several model re-trainings

Local approximations are more efficient, but still expensive

With larger models, influence values are more noisy

A lot of recent work on more efficient computation

Memorisation

What Neural Networks Memorize and Why:
Discovering the Long Tail via Influence Estimation

Vitaly Feldman * Chiyuan Zhang*
Apple Google Research, Brain Team

Observations:

Neural networks fit even outliers or mislabelled points
=> They memorise some of the training samples

Natural data are long-tailed
=> they have a significant fraction of atypical samples

Memorisation

What Neural Networks Memorize and Why:
Discovering the Long Tail via Influence Estimation

Vitaly Feldman * Chiyuan Zhang*
Apple Google Research, Brain Team

Observations:

Neural networks fit even outliers or mislabelled points
=> They memorise some of the training samples

Natural data are long-tailed
=> they have a significant fraction of atypical samples

Claim:
Memorisation is essential to reach close-to-optimal
generalisation error

Memorisation

For a neural network, the memorisation score can be defined as:

mem(z) = L(z,0_,) — L(z,)

Notice that memorisation <=> self-influence

mem(z) = 1(z, z

Memorisation

For a neural network, the memorisation score can be defined as:

mem(z) = L(z,0_,) — L(z,)

Notice that memorisation <=> self-influence

mem(z) = 1(z, z)

Memorisation: results

MNIST
memorisation

Memorisation: results

MNIST
memorisation

ImageNet memorisation
for “bobsled"

Memorisation: results

accuracy
accuracy

remove memorized
—&— remove random

o S

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
memorization value threshold memorization value threshold

trainset fraction
trainset fraction

(a) ImageNet (b) CIFAR-100

O
©
©
N
o

accuracy

memorisation boosts
accuracy!

)
)
v
C
©
| -
-

|

0.2 0.4 0.6 0.8 1.0
memorization value threshold

(c) MNIST

Memorisation: summary

1. Natural datasets are fat-tailed
2. Difficult points are memorised by NNs

3. They have big impact on model accuracy . e s hoo

0.6
influence

(a) ImageNet

Memorisation: summary

1. Natural datasets are fat-tailed
2. Difficult points are memorised by NNs

3. They have big impact on model accuracy M TERTTNNN

0.6
influence

(a) ImageNet

Questions:

1. If so many points have negligible memorisation, why don't
we just remove them?

2 Which are other good “impact scores”?

Ji |s data efficiency something we should care about?

Data Pruning

Beyond neural scaling laws: beating power law scaling via data

pruning
Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, Ari S. Morcos

Published: 31 Oct 2022, Last Modified: 13 Jan 2023 NeurIPS 2022 Accept Readers: @@ Everyone Show Bibtex Show Revisions

Empirical neural scaling laws
=> test error falls off as a power law of training data, model size or compute

Data Pruning

Beyond neural scaling laws: beating power law scaling via data

pruning
Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, Ari S. Morcos

Published: 31 Oct 2022, Last Modified: 13 Jan 2023 NeurIPS 2022 Accept Readers: @@ Everyone Show Bibtex Show Revisions

Empirical neural scaling laws
=> test error falls off as a power law of training data, model size or compute

E.g., in LLMs a decrease in cross in cross-entropy loss from 3.4 to 2.8 requires
10x more data

L is the loss

More precisely: . P the training set size

v typically takes values 0.1-t0 0.5

Can we reduce the scaling to exponential?

Data Pruning: analytic results

Would data pruning work? Let’s try with a simple toy problem

Student-teacher for perceptron learning:

Given x* ¢ RVET ¢ RN

The teacher generates the labels: yt¥ = sign(T - x¥

The student fits the data to recover the value of T

Data Pruning: analytic results

Would data pruning work? Let’s try with a simple toy problem

Student-teacher for perceptron learning:

Given x* ¢ RVET ¢ RN

The teacher generates the labels: y* = sign(T - x*

The student fits the data to recover the value of T

Data Pruning: toy-model results

Perceptron in teacher-student setting

— Theory

C ﬁ.»“u.,,fi‘-.,j o
e Simulation

. w
—

4 Uhag o

Frac. data kept 3 0
® 100%
® 77%
® 60% frontier |\
® 46% \
® 36%
® 28%
®22%
®17%

13%

10%

1 2
Training examples per parameter (Qprune)

P
o
= 10
()}
)
O
|_

1. Pruning yields better scaling

2. If total amount of data is small, keeping hard
samples is worse than choosing randomly

Data Pruning: toy-model results

Perceptron in teacher-student setting

Joe

Keep hard
examples

piey daoy

)
Q.
Q

4
(4°)

=
(4v)

©
U
(48]
—
L

Keep easy
examples

10° 10*
Total examples per parameter (Xtot)

The optimal pruning strategy depends on the
total amount of datal!

Data Pruning in practice

Does data pruning work with more realistic datasets?

Yes, but it depends on the metric

Perceptron in teacher-student setting B ResNet18 on SVHN ResNet18 on CIFAR-10 ResNet50 on ImageNet
Frac. data kept 2 -
1%

] ® 2%
Frac. data kept ® 3%

— Theory
® Simulation

Frac. data kept
20%
® 30%

Frac. data kept
20%
® 30%
® 40%
® 50%
® 60% Pareto

20% e Y ® 5%
® 30% 2 ® 8%
® 40% Pareto N ¢ ® 13% ® 40%
® 50% frontier \ ® 22% o 00
® 60% ® 36% ® 60%
® 70% Pareto ® 60% Paiati Paretn

' . / frontier ® 100% ® 70% fronti ® 70%
® 80% ® 80% rontier ® 80%
o 1000 | ® 90% - ® 90%
® 100% ® 100% o 100%

Test error (%)

)
>
<
o
(@]
b
S
)
—
]
l_

Test error (top-5 %)

-
o

=
o
[~

0.5 1 2 3 4 103 104 10° 10° 10" 10° 10°
Training examples per parameter Training examples Training examples Training examples

Data Pruning in practice

Does data pruning work with more realistic datasets?

Yes, but it depends on the metric

Perceptron in teacher-student setting B ResNet18 on SVHN ResNet18 on CIFAR-10 ResNet50 on ImageNet
Frac. data kept 2 H
1%

® 2%
Frac. data kept ® 3%

o — Theory
® Simulation

Frac. data kept
20%

® 30%

® 40%

Frac. data kept
20%
® 30%
® 40%
® 50%
® 60% Pareto

20% LY ® 5%

® 30% \\ ® 8%

® 40% Pareto N\ ® 13%

® 50% frontier ® 22% ® 50%

® 60%) ® 36% o c0%
-~ 0

® 70%) Paret.o ® 60% ® 70% ® 70% frontier

0 D) Y frontier ® 100%

® 80% - X ® 80% ® 80%

® 90% ® 90% ® 90%

® 100% ® 100% ® 100%

Test error (%)

)
>
<
.
(@]
S
S
)
-
]
|_

Test error (top-5 %)

Pareto
frontier

[
R

0.5 1 2 3 4 103 104 10° 10° 10" 10° 10°
Training examples per parameter Training examples Training examples Training examples

ResNet18 on CIFAR-10

Joe

Keep hard
examples

©
o)

piey doay

©
o

1
Q
N
N

The shift from easy to hard
samples also remains true

Frac. data kept

o
I
d

Keep easy
examples

o
N

104
Total examples

Data Pruning: metrics

Which is the best “difficulty” metric?

random pruning

DDD

EL2N (1 model)

EL2N (20 models)
self-supervised prototypes
supervised prototypes
active learning
forgetting

influence max
influence sum-abs
memorization

no pruning (+-2 std)

O

[00]

o)
R
>
(@)
(o]
—
o
(@)
(@)
<

(0]
(0]

(o]
~

0.15 0.20 0.25
Pruning fraction

. EL2N: L2 norm of the error
+ Memorisation seems the best (?)

e Some are worse than random

Data Pruning: unsupervised metric

Memorisation needs labels.
Can we have a metric that does not need them?

no pruning (+-2 std)
random pruning
memorization

supervised prototypes
self-supervised prototypes

S
>
O
©
—
-
Y
O
©
o
9
=

0.85 0.8 0.75
Frac. data kept

k-means clustering on the embedding of a pre-trained model with class-
balancing gives good results

Data efficiency: conclusions

. Data inefficiency has high cost
. Data pruning can be effective
. The issue is the “difficulty metric”

Memorisation seems to be the best, but it is very expensive

. For now, EL2N gives the best cost/accuracy

* Unsupervised metrics good for continuous learning

4

Data efficiency: conclusions

Data inefficiency has high cost
Data pruning can be effective
The issue is the “difficulty metric”
Memorisation seems to be the best, but it is very expensive
For now, EL2N gives the best cost/accuracy

Unsupervised metrics good for continuous learning

oR\ Y\, /30%\ A

il | &

»

Questions?

