
Influence Functions and Data 
Pruning

From theory to non-convergence and applications



Overview
Part 1: Influence functions 

1. What are influence functions? 

2. Issues with convergence 

Part 2: Towards data efficiency 

3. What Neural networks memorise and why? 

4. Data pruning in model training



Part 1: 
Influence Functions



Data valuation

• Evaluates the samples that have the highest impact on model 
training 

• To each training sample, it associates a score 

• Bad samples (e.g. mislabelled images) should have bad scores



Data valuation

• Evaluates the samples that have the highest impact on model 
training 

• To each training sample, it associates a score 

• Bad samples (e.g. mislabelled images) should have bad scores

Data efficiency:  

Given a model and a test set, which is the best training dataset that 
maximises accuracy and minimises cost?



Influence functions

• First introduced for “robust statistics” in the 70s 

• Popularised for neural networks in 2017 by Koh & Lang 

• They try to assess the effect of each single training point on the 
accuracy of a model 

• They fall under the umbrella of Explainable AI, with some 
important remarks



Influence functions: notation

Let’s start with the following definitions: 

• zi = (xi, yi) is the i-th training sample 

• 𝜃 is the (potentially highly) multi-dimensional array of parameters of the NN 

• L(z, 𝜃) is the loss of the model for point z and parameters 𝜃.



Influence functions: notation

Let’s start with the following definitions: 

• zi = (xi, yi) is the i-th training sample 

• 𝜃 is the (potentially highly) multi-dimensional array of parameters of the NN 

• L(z, 𝜃) is the loss of the model for point z and parameters 𝜃.

Model training =>

One way to quantify the effect of training point z on the model is to compare it with 

Model training 
without z =>



Influence functions: naïve definition

We want to quantify the influence of a training sample z on the accuracy of the model 
(with parameters 𝜃) on a test sample ztest. One naïve definition would be:

For most practical applications, this approach is not viable because it entails re-
training the model several hundred times!



Influence functions: local approximation

When re-training the model is not possible, we need to rely on local analysis.

Let’s consider the model trained with the sample z having ϵ more weight 
than the other points

As ϵ → 0, a first order account of the effect of z on ztest can be defined as 



Influence functions: local approximation

After a few algebraic steps, one finds that the new (local) influence function 
definition is equal to 

Hessian of the model =>



Influence functions: local approximation

After a few algebraic steps, one finds that the new (local) influence function 
definition is equal to 

Hessian of the model =>

Important Notes: 

• All terms are gradients wrt. 𝜃 and can be calculated through backpropagation! 

• Calculating the Hessian is a huge problem. H is a big matrix, which also needs to be 
inverted.



Influence functions: interpretation
Influence values have a simple interpretation:  

 
they tell you how much the loss of a model on a test point ztest decreases if the point z 

is given more weight during training



Influence functions: interpretation
Influence values have a simple interpretation:  

 
they tell you how much the loss of a model on a test point ztest decreases if the point z 

is given more weight during training

Let’s pick an example from our library pyDVL:  
Image classification with Resnet18

ztest

Influences

They are only partially explainable
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• Inverting the Hessian is often very expensive 

• It is also often not well defined => NN models are not convex!
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For non convexity  
=> add a perturbation term

For inversion  
=> use approximate techniques (e.g. conjugate gradient)



Influence functions: issues
• Inverting the Hessian is often very expensive 

• It is also often not well defined => NN models are not convex!

There are several available workarounds:

For non convexity  
=> add a perturbation term

For inversion  
=> use approximate techniques (e.g. conjugate gradient)

For more details come to our upcoming seminar!



Influence functions: issues

1. How similar is the local approximation to the initial  
leave-one-out definition? 

2. How does it depend on network architecture?



Influence functions: issues
Let’s compare the correlation of parameter changes



Influence functions: issues

The approximation is better for highly influential points!

Influence values may not be reliable 
influence rankings might be!



Conclusions to part 1

• Influence functions estimate sample impact on model accuracy 

• Their calculation entails several model re-trainings 

• Local approximations are more efficient, but still expensive 

• With larger models, influence values are more noisy 

• A lot of recent work on more efficient computation



Conclusions to part 1

• Influence functions estimate sample impact on model accuracy 

• Their calculation entails several model re-trainings 

• Local approximations are more efficient, but still expensive 

• With larger models, influence values are more noisy 

• A lot of recent work on more efficient computation

Ok, but are they actually 
useful???



Part 2: 
Towards Data Efficiency



Memorisation

Observations: 

• Neural networks fit even outliers or mislabelled points 
=> They memorise some of the training samples 

• Natural data are long-tailed 
=> they have a significant fraction of atypical samples



Memorisation

Observations: 

• Neural networks fit even outliers or mislabelled points 
=> They memorise some of the training samples 

• Natural data are long-tailed 
=> they have a significant fraction of atypical samples

Claim:  
Memorisation is essential to reach close-to-optimal  

generalisation error



Memorisation
For a neural network, the memorisation score can be defined as:

Notice that memorisation <=> self-influence



Memorisation
For a neural network, the memorisation score can be defined as:

Notice that memorisation <=> self-influence

In practice: 

1. Take many random subsets of the training set 

2. For each, train model for a few epochs 

3. Calculate the average loss of the models with and without z

Better than leave-one-out but still very computationally expensive!



Memorisation: results

MNIST  
memorisation



Memorisation: results

MNIST  
memorisation

ImageNet memorisation 
for “bobsled" 



Memorisation: results

memorisation boosts 
accuracy!



Memorisation: summary

1. Natural datasets are fat-tailed 

2. Difficult points are memorised by NNs 

3. They have big impact on model accuracy



Memorisation: summary

1. Natural datasets are fat-tailed 

2. Difficult points are memorised by NNs 

3. They have big impact on model accuracy

Questions: 

1. If so many points have negligible memorisation, why don’t 
we just remove them? 

2. Which are other good “impact scores”? 

3. Is data efficiency something we should care about?



Data Pruning

Empirical neural scaling laws  
=> test error falls off as a power law of training data, model size or compute



Data Pruning

Empirical neural scaling laws  
=> test error falls off as a power law of training data, model size or compute

E.g., in LLMs a decrease in cross in cross-entropy loss from 3.4 to 2.8 requires 
10x more data 

More precisely:
• L is the loss 

• P the training set size 
• ν typically takes values 0.1- to 0.5

Can we reduce the scaling to exponential?



Data Pruning: analytic results

Would data pruning work? Let’s try with a simple toy problem

Student-teacher for perceptron learning:

Given

The teacher generates the labels:

The student fits the data to recover the value of T



Data Pruning: analytic results

Would data pruning work? Let’s try with a simple toy problem

Student-teacher for perceptron learning:

Given

The teacher generates the labels:

The student fits the data to recover the value of T

For pruning: 

1. Train a “probe”, a student model, for only a few epochs 

2. Compute a “difficulty metric” 

3. Prune the dataset and re-train a model to full convergence



Data Pruning: toy-model results

1. Pruning yields better scaling 

2. If total amount of data is small, keeping hard 
samples is worse than choosing randomly



Data Pruning: toy-model results

The optimal pruning strategy depends on the 
total amount of data!



Data Pruning in practice
Does data pruning work with more realistic datasets? 

Yes, but it depends on the metric



Data Pruning in practice
Does data pruning work with more realistic datasets? 

Yes, but it depends on the metric

The shift from easy to hard 
samples also remains true



Data Pruning: metrics

Which is the best “difficulty” metric?

• EL2N: L2 norm of the error 

• Memorisation seems the best (?) 

• Some are worse than random



Data Pruning: unsupervised metric

Memorisation needs labels.  
Can we have a metric that does not need them? 

k-means clustering on the embedding of a pre-trained model with class-
balancing gives good results



Data efficiency: conclusions
• Data inefficiency has high cost 

• Data pruning can be effective 

• The issue is the “difficulty metric” 

• Memorisation seems to be the best, but it is very expensive 

• For now, EL2N gives the best cost/accuracy 

• Unsupervised metrics good for continuous learning 



Data efficiency: conclusions
• Data inefficiency has high cost 

• Data pruning can be effective 

• The issue is the “difficulty metric” 

• Memorisation seems to be the best, but it is very expensive 

• For now, EL2N gives the best cost/accuracy 

• Unsupervised metrics good for continuous learning 

Questions?


