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What are Black-Box Classifiers?

• Complex models whose inner

workings are not directly

interpretable.

• Often associated with deep

learning, ensemble methods.

• Powerful in performance, but

challenging in transparency.

https://xkcd.com/1838/
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Why Explain Black-Box Classifiers?

• Trustworthiness: Can we trust

what we don’t fully understand?

Can we understand, which

features are relevant for an

individual instance?

• Debugging: Identifying and

rectifying model mistakes.

• Legal & Ethical: Meeting

regulations and ethical standards.

• Stakeholder Communication:

Explaining decisions to

non-experts.

Figure 1: Cat or dog?a

ahttps://thedatafrog.com/en/

articles/dogs-vs-cats/
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What’s out there in the wild?

Two popular examples for explainability methods:

• LIME (Local Interpretable Model-agnostic Explanations)1: LIME explains

individual predictions by approximating black-box models locally with

simpler interpretable models.

• Kernel SHAP (SHapley Additive exPlanations)2: Kernel SHAP assigns

each feature an importance value based on average contributions across

all possible feature combinations, grounded in game theory.

1Ribeiro et. al., ”Why Should I Trust You?”: Explaining the Predictions of

Any Classifier, 2016 [5]
2Lundberg, Scott and Lee, Su-In, A Unified Approach to Interpreting Model

Predictions, 2017 [4]
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What about Information Theory?

We look at the work of Chen et. al.3, which tackles the problem from an

information-theoretic point of view:

• Instance-wise feature selection for model interpretation, where each

example’s most informative features are identified.

• The feature selector is trained to boost the mutual information between

chosen features and the outcome of the model in question.

• Variational formulation to allow for an efficient computation.

3Chen et. al, Learning to Explain: An Information-Theoretic Perspective on

Model Interpretation, 2018[1]
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A Primer on Information

Theory



Information Theory

We start with revising some information-theoretic concepts. In the following,

let X ,Y be discrete random variables, with joint mass function p(X ,Y ) and

marginal mass functions pX , pY :

Information content / Surprisal:

• I (y) = − logP(Y = y)

• an event with low probability has a high surprise

• If it rarely rains in the desert, the information content of It will rain

tomorrow is very high because it’s so unexpected.

Entropy:

• H(Y ) = −
∑

y P(Y = y) logP(Y = y) = E[I (Y )]

• Measures the average surprise or uncertainty when observing random

outcomes from Y .

• If a city’s weather is truly unpredictable, with equal chances of rain or no

rain on any given day, then the entropy of the weather forecast is high.
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Information Theory

Conditional Entropy for specific realization:

• H(Y |X = x) = −
∑

y P(Y = y |X = x) logP(Y = y |X = x)

• Calculates the uncertainty in one variable, given a specific known

outcome of another variable.

• When you know it is raining today, how uncertain are you about the

weather tomorrow?

Conditional Entropy:

• H(Y |X ) = −
∑

x pX (x)H(Y |X = x) = E[− logP(Y |X )]

• Average uncertainty of one variable when we have information about

another variable.

• The conditional entropy gives the average uncertainty about tomorrow’s

rain, given different atmospheric pressures of today.
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Information Theory

Mutual Information:

• I (X ;Y ) =
∑

x

∑
y p(X ,Y )(x , y) log

p(X,Y )(x,y)

pX (x)pY (y)
= H(Y )− H(Y |X )

• Reduction in uncertainty about Y after observing X

• If knowing today’s atmospheric pressure greatly reduces your uncertainty

about rain tomorrow, then the mutual information between pressure and

rain is high.
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Information Theory

To wrap up:

• Information content / Surprisal: I (y) = − logP(Y = y) (an event with

low probability has a high surprise)

• Entropy: H(Y ) = E[I (Y )] (Uncertainty about Y )

• Conditional entropy: H(Y |X ) = E[− logP(Y |X )] (Average uncertainty of

Y when we have information about X )

• Mutual Information: I (X ;Y ) = H(Y )− H(Y |X ) (Reduction in

uncertainty about Y after observing X )
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Information-Theoretic

Explanation



Setting

We consider classification problem with classes [c] = {1, · · · c}, where the

features are modeled by a random vector X (with realizations in Rd) with

marginal distribution

X ∼ PX (·),

and the predicted class Y by the classification model m is accessible via the

family of conditional distributions:

(Y |x) ∼ Pm(·|x), x ∈ Rd , realization of X

Caution: In this context, we are not discussing the population conditional class

distributions. Our focus is solely on the conditional class distributions induced

via the classification model.
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Feature Importance

Taking a global perspective, one could ask which subset of the features is most

relevant with respect to the mutual information to the target variable.4 More

concrete, consider the question of top-k important features. For the index set

[d ] = {1, . . . d} define the admissible set

Pk := {S ⊂ 2[d ]||S | = k},

i.e. all subsets of size k of the power set of the index set. Search for the

optimal subset S∗

S∗ := argmax
S∈Pk

I (XS ,Y ),

where XS is the restriction of X to a fix subset S .

4Gao et. al, Variational Information Maximization for Feature Selection,

2016[3]
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Feature Importance

Solving the combinatorial problem

argmax
S∈Pk

I (XS ,Y )

is in general NP-hard. One possibility to tackle the problem, is to use greedy

algorithms.5 Besides the difficulties in the computation, this importance score

is a global measure, i.e. it gives the most important features on average.

For complex models, we are more interested in a local importance, i.e. the

most relevant features might vary, depending on the specific realization x .

5Das, Abhimanyu and Kempe, David, Submodular Meets Spectral: Greedy

Algorithms for Subset Selection, Sparse Approximation and Dictionary

Selection, 2011[2]
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Instancewise Feature Selection

An explainer E of size k is a mapping,

which assigns a conditional distribution

P(S |x) to every x ∈ Rd . Given a subset

S = E(x), we denote the sub-vector for

the corresponding entries as xs .

This defines a new random vector, which

we again denote by XS ∈ Rk .
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Instancewise Feature Selection

Using the definition of an explainer E and the constructed random vector XS ,

we can formulate our objective for the instance-wise feature selection:

max
E

I (XS ;Y ) subject to S ∼ E(X )

So we want to maximize the mutual information between the response variable

from the model and the selected features, as a function of the selection rule E .
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Variational Approximation



Mutual Information Objective

In order to derive a tractable formulation, let us inspect the objective:

I (XS ;Y ) = H(Y )− H(Y |XS)

= E[log Pm(Y |XS)] + H(Y )

• H(Y ) is independent of S ,

• maximizing the mutual information is equivalent to minimizing the

conditional entropy,

• in order to get the conditional entropy, we would have to compute

expectations under the conditional distribution Pm(·|xS), which is

infeasible for general models.
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Conditional Entropy

The (negative) conditional entropy can be expressed as:

−H(Y |XS) = E[log Pm(Y |XS)] = EXES|XEY |XS
[log Pm(Y |XS)]

In order to find a variational lower bound for the inner expression

EY |XS
[log Pm(Y |XS)],

we introduce (for the every fixed subset S) a conditional distribution QS(·|xS):

EY |XS
[log Pm(Y |XS)] = EY |XS

[
log

(
Pm(Y |XS)

QS(Y |XS)

)]
︸ ︷︷ ︸

DKL(Pm(·|xS )||QS (·|xS ))≥0

+EY |XS
[logQS(Y |XS)]

≥ EY |XS
[logQS(Y |XS)]
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Variational formulation

Let us define a collection of conditional distributions:

Q = {QS(·|xs), S ∈ Pk}

with this, the maximization of the mutual information can be relaxed to:

max
E,Q

E[logQS(Y |XS)] subject to S ∼ E(X )

Still, for generic Q, E this is not tractable, so we have to restrict to suitable

families.
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Spoiler

Figure 2: Diagram of training phase6

6Screenshot taken from https://www.youtube.com/watch?v=id_CmUaTWpg
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Parametrizing the Variational Distributions

Criteria for Q

• there should be suitable parametrization, which is accessible for

optimization,

• the conditional distributions QS(·|xS) should be close to Pm(·|xS) (small

KL-divergence)

The idea is to use a single neural network together with a masking operation.

Using

gα : Rd × [c] → [0, 1],

where [c] = {1, . . . , c} are the possible classes, we define:

QS(Y |xS) := gα(x̃s ,Y ),

with

(x̃S)i =
xi i ∈ S

0 i /∈ S
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Parametrizing the Variational Distributions

Using the neural network gα, our maximization problem now looks like

max
E,α

E[log gα(X̃S ,Y )] subject to S ∼ E(X )

where

X̃S = ZS ⊙ X ∈ Rd ,

and ZS is the k-hot random vector (i.e. the mask), encoding the subset S .

• objective is differentiable in α (the parameters of the variational neural

network),

• we still miss a smooth parametrization for E
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Smooth Relaxation of Masking

Given a categorical distribution represented by a one-hot vector, with category

probabilities p1, . . . , pd .

Gumbel-softmax re-parametrization trick (Concrete relaxation):

Ci =
exp{(log pi + Gi )/τ}∑d
j=1 exp{(log pj + Gj)/τ}

,

with

Gi = − log(− log ui ), ui ∼ Uniform(0, 1)

We denote:

C ∼ Concrete(log p1, . . . , log pd)

The parameter τ is called temperature: the smaller the temperature, the closer

the realizations of C resemble a one-hot vector.
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Smooth Relaxation of Masking

To employ the Gumbel-softmax trick, we make the log probabilities learnable.

We introduce a feature importance function

ωθ : Rd → Rd ,

which should depend smoothly on θ and define k random vectors

C j ∼ Concrete(ωθ(X )) i.i.d. for j = 1, . . . , k

and

V = (V1, . . . ,Vd), Vi = max
j

C j
i

The random vector V = V (θ, ζ) is a function of the parameters θ and auxiliary

random variables

ζi ∼ Gumbel(0, 1) i.i.d. for i = 1, . . . , d

and we use this to smoothly approximate the k-hot vector ZS .
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Smooth Objective

To sum up, we replace the original objective

E[log Pm(Y |XS)]

with the parametrized relaxation

Loss(θ, α) = EX ,Y ,ζ [log gα(V (θ, ζ)⊙ X ,Y )]

= EX ,ζ

[
c∑

y=1

Pm(y |X ) log gα(V (θ, ζ)⊙ X , y)

]

and ask to solve

max
θ,α

Loss(θ, α)
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Training Phase

Figure 3: Diagram of training phase7

7Screenshot taken from https://www.youtube.com/watch?v=id_CmUaTWpg
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Explanation Phase

Using the learned feature importance function ωθ and a sample x :

• Compute the weights ωθ(x),

• select k features based on the top-k weights

The explanation phase requires one computation of ωθ per sample.

25



Experiments



Sentiment Classification

The authors provide a binary sentiment classification problem for the Large

Movie Review Dataset (IMDB). It consists of 50, 000 movie reviews, labeled

either as positive or negative.

• IMDB-Word: explain a CNN with keywords

• IMDB-Sentence: explain a hierarchical LSTM with the most important

sentence

Both models achieve an accuracy of around 90% on the test data. The feature

importance networks (ωθ) and variational approximators (gα) are constructed

from pre-trained word embeddings followed by convolutional, dense and pooling

layers.8

8For conrete architectures, see Section 4.2 of [1]
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IMDB-Word
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IMDB-Sentence
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Evaluation

Post-hoc accuracy: On a test data set, run the explanation stage for every

sample, mask the unselected features with zero padding and feed this into the

original classification model. Compare this to the model output for full features.

Human accuracy: Provide humans with the feature subsets (i.e. top-10

Keywords or top-1 sentence), generated by the explainer, and ask them to give

a prediction. Compare this prediction to the output of the classification model.9

9For a detailed description of the Amazon Mechanical Turk experiment, see [1,

Section 4.2.1]
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Discussion



Summary

• Instance-wise feature selection based on maximising mutual information.

• Tractable formulation using variational lower bound technique and the

Gumbel-softmax trick.

• After initial training phase, explaining needs one forward pass per sample.

• Experiments to validate the explainer.
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Questions

• Given a classifier model to explain, how to choose the feature importance

function ωθ and the variational approximator gα?

• What are good strategies for choosing the temperature parameter τ in

the Gumbel-softmax trick?

• What about considering other information-theoretic measures, e.g.

Kullback-Leibler divergence10?

• Is post-hoc accuracy a good metric?

10Yoon, Jinsung and Jordon, James, INVASE: INSTANCE-WISE VARIABLE

SELECTION USING NEURAL NETWORKS, 2019, [6]
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Implementations

• Implementation of the authors using Tensorflow (research code):

https://github.com/Jianbo-Lab/L2X

• Implementation in the OmniaXAI package using pytorch:

https://github.com/salesforce/OmniXAI
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Thank you!
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