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Anomaly detection is a notoriously ill-defined problem. The notion of an anomaly
is arguably subjective since it depends to some extent on the downstream task.
Nevertheless, there have been several attempts to provide exact descriptions that
can act as definition of an anomaly. In particular, density based anomaly scores
are very popular as they appeal to the intuition that anomalies appear in rarely
observed regions of the feature space. Inspired by work by Charline Le Lan and
Laurent Dinh, I want to discuss in this article why even perfect density models
cannot guarantee to provide good anomaly detection results and why I think
we still need them.
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In [LD21] the authors challenge some commonly used density based
approaches to anomaly detection. They criticize the representation
dependence of density scoring methods. The paper is interesting not
only because of its content but also because of its history. It received
a quite strong rejection at ICLR 2020 although the reviewers honor
the attempt to challenge current practices. The rejection was mainly
because the reviewers did not agree with the main principle that is
formulated in the paper: Anomaly detection techniques should gener-
ally be invariant under reparametrization with continuous invertible
functions. The ICLR review is available online on OPENREVIEW and
the discussion between the authors and the reviewers is an interesting
addition to read alongside the paper.
The paper was eventually published in the journal ENTROPY and pre-

sented at the I Can't Believe it's not Better workshop at NEURIPS 2020. I
actually first saw the well delivered presentation at this workshop and
it really made me think again about the fundamental setup of anomaly
detection. However, I would eventually agree with the ICLR review.
In this post I want to present the content of the paper alongside some
thoughts that occurred to me while reading in the hope that other
people might also benefit from revisiting these fundamental questions
about anomaly detection.

1 Density based definitions of anomaly

A popular way of approaching anomaly detection is to view it as a
binary classification task where at training time only samples from one
class, the nominal one, are available (one-class classification). Simply
put, one aims to partition the feature space𝒳 into two subsets𝒳in and
𝒳out where 𝒳in denotes the nominal region and 𝒳out the anomalous

https://openreview.net/forum?id=MkrAyYVmt7b
https://i-cant-believe-its-not-better.github.io/neurips2020/
https://i-cant-believe-its-not-better.github.io/neurips2020/
https://i-cant-believe-its-not-better.github.io/neurips2020/
https://i-cant-believe-its-not-better.github.io/neurips2020/
https://i-cant-believe-its-not-better.github.io/neurips2020/
https://i-cant-believe-its-not-better.github.io/neurips2020/
https://i-cant-believe-its-not-better.github.io/neurips2020/
https://i-cant-believe-its-not-better.github.io/neurips2020/
https://i-cant-believe-its-not-better.github.io/neurips2020/
https://i-cant-believe-its-not-better.github.io/neurips2020/
https://i-cant-believe-its-not-better.github.io/neurips2020/


region. Within this approach, we assume that the nominal points are
drawn from a probability distribution PX and demand that 𝒳in covers
the majority of the density mass, say 99%. However, this alone does
not uniquely determine the partition as there are obviously infinitely
many ways to cover 99% of the probability mass of a continuous dis-
tribution.

One can additionally argue that the density of the nominal distrib-
ution in the anomalous region should generally be smaller than in the
nominal region by appealing to the intuition that anomalies should pro-
duce unusual observations. We can then define 𝒳in= {x ∈𝒳∣pX(x)>
λ} and 𝒳out= {x ∈ 𝒳∣ p(x)≤ λ} to be the upper level and lower level
sets with respect to some density threshold λ that is chosen such that
PX(𝒳in)=0.99. This definition appears for instance in Bishop [Bis94].

Intuitively, the idea might seem pretty solid since densities are
related to probabilistic frequencies which seems to match our intuition
that anomalies occur in unlikely areas of the feature space. However,
a direct attribution of high density with high frequency seems faulty

1 Gaussian Annulus Theorem
[BHK20]. For every spherical d-

dimensional Gaussian with variance
1 in each direction and any β< d� at
most 3 e−cβ2 of the probability mass
lies outside the annulus d� −β≤ |x|≤

d� +β where c is a fixed constant.

in high dimensions when considering the Gaussian annulus theorem1.

Most of the probability mass of a high dimensional Gaussian is con-
centrated in a thin annulus around the surface of a hypersphere of
radius d� . This might seem unintuitive at first glance but becomes
clearer if we recall that the length of a sample vector is distributed like

∑d
i=1 Xi

2� andwhere theXi are independent standard normal distrib-

utions. Since ∑i=1
d Xi

2 follows a chi-squared distribution by definition,

∑d
i=1 Xi

2� follows a chi distribution with d degrees of freedom. The

mean of ∑d
i=1 Xi

2� is therefore 2�
Γ(k+1

2 )
Γ(k2)

≈ k� . The chi distribution
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Figure 1. Mean and variance of a χ dis-
tribution as function of the degrees of
freedom

has a relatively low variance of k− ((((((((((((( 2�
Γ(k+1

2 )
Γ(k2) ))))))))))))

)2.
Hence, for large d we will barely ever observe anything close to the

origin. It was argued therefore that one might want to count it to the
anomalous region. The highest density of the Gaussian is however
still obtained at the origin. In order to account for such phenomena,
the notion of a typical set has been introduced.

DEFINITION 1. (ϵ-typical set [CT06]). For a random variable X and

ϵ>0 the ϵ-typical set Aϵ
(N )(X )⊆𝒳Nis the set of all sequences that satisfy

|||||||||||||||H(X )+
1
N�
i=1

N

log(p(xi))|||||||||||||||≤ϵ,

where H(X )=−E[log(p(X ))] is the (differential) entropy.
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The definition of typical sets is useful for dealing with phenomena
like the Gaussian annulus theorem since limN→∞P (Aϵ

N (X ))=1 for any
ϵ > 0. Hence, for large N the ϵ-typical set will contain most of the
mass with respect to the joint probability measure.

1.1 Is the center of a high dimensional Gaussian anomalous?

Let us first note that the Gaussian annulus theorem does not state that
the area that is enclosed by the annulus is disproportionally rarely
observed. Rather, it follows from the geometry of the high dimensional
space that the volume close to the surface of the sphere is relatively

2 Recall that the volume of a d-dimen-
sional sphere with radius r is Vd(r)=

π
d
2

Γ(d2 +1) r
d. Hence for r > ϵ, the ratio

of the volume of an ϵ-annulus of
a sphere to the enclosed volume is
Vd(r + ϵ)−Vd(r − ϵ)

Vd(r − ϵ) = (r + ϵ)d

(r − ϵ)d
−1, which

goes to ∞ as d →∞.

large.2 For large d, the ϵ-annulus of radius d� contains many times the
volume of the enclosed area. However, the probability of the enclosed
area under an isotropic Gaussian is still larger than the probability
of any subset of the annulus of the same volume. In a sufficiently
(i.e. very) large dataset the area around the origin will in fact have
the highest density of data points. The relationship between the d-
th order growth of the volume of the sphere with the radius and the
exponential decay of the density function of the Gaussian with the
radius creates annulus phenomenon.

Nevertheless, points close to the origin are in some sense very dis-
similar to the vast majority of the observed points in terms of distance
to the origin. I think this is a very good example where a subjective
notion of rareness is tied to a non-Euclidean notion of similarity. In
fact, if we consider the variable Y = |X | then we obtain density based
anomalous regions that are in line with the intuition that only the
annulus should be counted as nominal. One should be aware that
behind this mapping is an arbitrary notion of equivalence, or more
generally of similarity, in terms of length of a vector. In this space den-
sities look substantially different. We also loose information because
we equate all vectors of same length. We already see that the state-
ment that anomalous regions coincide with low densities can only be
true under certain representations because it depends on howwell dis-
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Figure 2. Probability density function
of a χ distribution with 100 degrees of
freedom.

tances in the space capture our intuitive notion of similarity.

2 The role of parameterization

Themain point of the paper is to stress that densities are highly depen-
dent on the feature space, up to a point where one can arbitrarily
interchange high and low densities via reparametrization. This fact
remains true even if we restrict ourselves to continuous bijective maps
where the image of the map contains the same information about the
represented event as the input. This leads the authors to raise doubts
about whether density scoring based approaches are reasonable for
anomaly detection in general.

Let us first have a look at the above claim. It is actually a simple con-
sequence of how densities transfer via continuous bijective maps. Let

The hidden assumptions and pitfalls of density based anomaly detec-
tion 3



X be a continuous random variable, f : 𝒳 → 𝒳′ a continuous invert-
ible function on X , and Y = f (X ). Then the pdf of X , pX(x), transfers
via f to the pdf on Y , pY (y). However, we need to take into account
the way f locally stretches or compresses the space. This is reflected
in the change of variables formula.

How severely even continuous invertible transformations can alter a
density function is demonstrated by the Knothe-Rosenblatt rearrange-
ment. There are only two mild assumptions that have to be made. The
densities of the two distributions should be larger 0 everywhere and
all cumulative conditional densities PXi∣X<i(Xi≤xi∣x1, . . . ,xi−1) should
always be differentiable in (x1,...,xi). As a consequence one can trans-
form any two such continuous distributions into each other using a

3 Knothe-Rosenblatt rearrange-
ment [Kno57, Ros52]: Any contin-
uous distribution with the above

mentioned properties can be trans-
formed into a uniform distribution

using a continuous invertible
map. Let X1, . . . ,Xn be continuous
random variables with joint dis-

tribution PX1, . . . ,Xn. Consider the
map f (x1, . . . ,xn)= (y1, . . . ,yn) with
yi = PXi∣X<i(Xn≤xi∣x1, . . . ,xi−1).

Note that ∂f
∂xT is lower triangular

since yi does not depend on xj for
i< j . Further, the ith component

on the main diagonal of ∂f
∂xT (x1, . . . ,

xn) is pXi∣X<i(xi∣x1, . . . ,xi−1) since
it is the derivative of the corre-

sponding conditional cumulative dis-
tribution. Hence, the determinant of

∂f
∂xT (x1, . . . ,xn) is simply the product
of the conditional densities, which
equals pX1, . . . ,Xn(x1, . . . ,xn) because
of the product rule. With this obser-

vation we can show that (Y1, . . . ,
Yn)= f (X1, . . . ,Xn) is uniformly dis-
tributed over the n-dimensional unit
hypercube because for all y1, . . . yn∈

[0,1]: pY1, . . . ,Yn(y1, . . . ,yn)=

pX1, . . . ,Xn(f
−1(ȳ))| ∂f

∂xT
(f −1(ȳ))|−1=1.

continuous invertible map.3

Example 2. Let X and Y be two continuous random variables with
the above-mentioned properties. With the Knothe-Rosenblatt con-
struction we obtain two continuous bijective maps fX , fY such that
fX(X ) and fY (Y ) are uniformly distributed over [0, 1]. We claim that
fY

−1fX(X ) has the same distribution as Y . Indeed, letting h≔ fY
−1∘ fX :

ph(X )(h(x)) = pX(x)|h′(x)|−1

= (pX(x)|fX′(x)|−1) |(fY−1)′(fX(x))|−1

= (pX(x)|fX′(x)|−1) |fY′(h(x))|
= pY (h(x)).

Note that the inverse of a continuous function is not necessarily
continuous if the domain and range have different dimensions but
with the two additional assumptions mentioned above, one can show
that fX and fY are differentiable bijections. The inverses are there-
fore also diffeomorphisms and in particular continuous. The examples
show that a purely density based approach to anomaly detection can
lead to completely different results depending on the nature and trans-
formations of observed features. To see this even more clearly, it is
important to observe how the densities of a distribution can change
relative to each other under continuous invertible maps. In the paper
the authors construct several more fine-grained examples that show
how one can alter densities even locally in an almost arbitrary fashion
or explicitly interchange the densities of two given points. Even if
we accept a density based definition in the original (real-world) prob-
ability space, the data we collect is already a transformation thereof,
i.e. a random variable. The authors illustrate this on the example of
images where the depicted object is the true sample and the images are
the transformations we observe. This becomes even more severe if the
images are given in a compressed format. Therefore, a density based
approach to anomaly detection must necessarily rely on the assump-
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tion that low density areas actually correspond to anomalous regions
in the presented feature space. Note that this has nothing to do with
how well our density model captures the true distribution. In fact,
the same problems arise if the true density function of the nominal
data under a certain representation is available.

The authors stress a very important point which is certainly not
new but osten overlooked in practice: One should keep in mind that
the bijectivity of the feature selection function is already a strong
assumption that will be violated in many practical scenarios. Net-
work intrusion detection, for instance, is osten performed on just a
few connection statistics, which are in no way sufficient for uniquely
characterising every possible connection [TBLG09]. Further, we will
usually have only limited knowledge about the transformation that
led to the observed data. The direct attribution of anomalous regions
with low densities becomes therefore arbitrary and needs additional
justification.

3 Reparametrization invariant approaches

We can obtain a reparametrization invariant definition of the anom-
alous region if we model the anomaly detection problem fully proba-
bilistically and use Bayesian inference. This is known as Huber's cont-
amination model [Hub64]. Since we accept that even in the anomalous
region the density of the nominal distribution is not 0, a sample that
lies in 𝒳out is not necessary an anomaly. Therefore, one might rather
think of being anomalous as a binary random variable O. The prob-
ability that a given sample is an anomaly is given by PO∣X(o∣ x). In
this case, it seems more plausible to choose the anomalous regions
based on a threshold on PO∣X(o∣x). This leads to a mixture model (1−
ϵ)Din+ ϵDout between the nominal distribution Din and the distrib-
ution Dout of the anomalies. Here Din= P (X ∣O = 0), Dout= P (X ∣O =
1) and ϵ=P (O=1) is the prior for observing an anomaly. We can now
define 𝒳in = {x ∈ 𝒳∣ PO∣X(1∣ x)≤ λ} and 𝒳out = {x ∈ 𝒳∣ PO∣X(1∣ x)> λ}
for some threshold λ∈ [0,1]. This definition is invariant under repa-
rametrization. Indeed, for any continuous invertible transformation
of X we can compute with Bayes' rule that

PO∣ f (X )(o∣ f (x)) =
pf (X )∣O(f (x)∣o)PO(o)

pf (X )(f (x))

=
pX ∣O(x ∣o)| ∂f

∂xT |−1PO(o)
pX(x)| ∂f

∂xT |−1
=

pX ∣O(x ∣o)PO(o)
pX(x)

= PO∣X(o∣x).

The hidden assumptions and pitfalls of density based anomaly detec-
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While this analysis is quite pleasing from a theoretical point of view,
it is arguably of limited use in practice. Osten times, the fraction of
anomalies ϵ is simply too small to learn a reasonable mixture model. It
might even happen that we have no anomalous samples at all. There-
fore, we need to make assumptions about ϵ and pX ∣O(x ∣1). One usually
adds additional assumptions to justify scoring by the nominal density
[KS12]. More precisely, we assume that that anomalies are:

• Outlying: Din and Dout do not overlap too much.

• Sparse: ϵ≪ 1
2 .

• Diffuse: Dout is not too spatially concentrated.

It might seem a little disappointing that we end up with the same den-
sity based method. However, these assumptions explicitly state under
which conditions we can expect good results from such a method. It
explicitly incorporates spatial assumptions about the nature of anom-
alies, especially the first and the last assumption take explicit reference
to spatial aspects of anomalies. This is even more present in other
approaches where for instance anomalies are defined in terms of dis-
tances, e.g. nearest neighbor distance ratios [BKNS00]. A distance
based approach emphasizes even more that the properties we are
looking for are not invariant under reparametrization.

The paper also mentions another way out: The comparison against
a reference distribution Dref. One can take the ratio of the density
with respect to the nominal distribution and the reference distribution
[GT07]. If both - nominal and reference distribution - are transformed
under the same continuous invertible function then the effect of the
transformation will be canceled out in their ratio. The reference dis-
tribution allows us to model knowledge about the feature space. In
this language we can quantify our assumptions and explicitly inte-
grate them into our calculations. The drawback of this approach is
again that we cannot expect to have complete knowledge about the
transformation that the data has undergone. It can be very hard to
define a good reference distribution under these circumstances.

4 Reparametrization invariance as a principle?

The previous analysis led the authors to the conclusion that any
anomaly detection technique should be invariant under reparametriza-

4 Formulation in the paper: “In an
infinite data and capacity setting,
the result of an anomaly detection
method should be invariant to any

continuous invertible reparametriza-
tion f .” tion. They formulate this as a principle.4

The proposal of this principle has been heavily criticized by the
reviewers and led eventually to the rejection at ICLR. I also feel that
this requirement is too strong. In this section, I want to point out a
few things that become apparent if we switch from the perfect model
regime to the learning from data regime.
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4.1 Why the principle is too strong

We now consider the scenario where anomalies are indeed defined
as lower level sets for some density threshold λ with respect to the
distribution of the nominal data in some fixed base representation.
We want to show that no algorithm can learn the anomalous region
if we allow that the data to be transformed by an arbitrary contin-
uous invertible function. Intuitively, this follows from the fact that we
can arbitrarily transform any distribution. However, this true for any
algorithm that purely learns from nominal data, even in the infinite
data regime. To make this a little more precise, let us formulate some
properties that we can safely assume for a learning algorithm A:

1. The algorithm takes a dataset X ∼D and outputs an anomalous
region A(X ) (represented by a model).

2. As the size of the dataset grows towards infinity, the algorithm
converges to a solution A(D) which only depends on the dis-
tribution D of the data.

3. The limit solutions are measurable and bounded with respect
to some base measure μ on the feature space, e.g. the Lebesgue
measure if 𝒳=ℝd.

We make the assumptions 2 and 3 mostly out of convenience. Note
that in this setup there is an implicit assumption about the algorithm
being deterministic. If we consider a stochastic algorithm we have to
fix the “random seed” of the algorithm and changing it would lead to a
different algorithm. What is important is that the result only depends
on the presented data. The algorithm is free to incorporate assump-
tions about the data but these assumptions need to tied to the algorithm
and must be independent of the distribution fromwhich the algorithm
is actually drawn. These assumptions are quite common when one
wants to talk about general limitations of learning algorithms. In fact,
they are inspired by the extended Bayesian formalism, which was also
used by Wolpert in his no free lunch theorem [Wol02]. While the
use of an improper uniform prior in the no free lunch theorem can
certainly be debated, the formal framework in which he conducts his
proof is well suited to answer general questions like ours.
I want to argue that if we restrict ourselves to reparametrization

invariant approaches then we cannot - not even in the infinite data
regime - guarantee to capture the anomalous region closely in terms
of precision with respect to the base measure in the feature space (we
use the base measure because we have no knowledge about the distri-
bution of the anomalies within the anomalous region or the frequency
of anomalies at test time). This holds even in cases were substantial
knowledge about the base representation is available. Let us illustrate
this with a little story about an unfortunate scientist. The example
shows that different situations become indistinguishable when we
transform the distributions with the Knothe-Rosenblatt rearrangement.

The hidden assumptions and pitfalls of density based anomaly detec-
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An unfortunate measurement

Imagine some scientists want to measure the state of an obscure par-
ticle that they have just discovered. They know that the state of the
particles are uniformly distributed in [0,1] except for one interval [ in ,
i+1
n ) where the density must be 50% smaller when compared to the

other intervals. They do not know where the exact spot is located, so
they decide to conduct an experiment and build a density model.

Figure 3. Visualization of the
experiment. We sample from all
possible worlds and fit a kernel
density estimator in the orig-

inal feature space (something the
scientist can of course not do).
Aster that we apply the cdf to

the sample and fit again a kde.
In the original feature space the

situations are clearly distinguish-
able but aster reparametrization
the situations are indistinguish-

able from the data.
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They can draw from an infinite supply of particles but unfortunately
they cannot measure the state directly. All they can do is to compare
the state of two particles and see which one has the higher value. They
can compare one particle with as many as they want, and therefore
they decide to take one particle at a time and compare it with many
newly drawn ones. Finally, they record the fraction of particles that
had a smaller state. Can the data help our scientists to find the anom-
alous region? Certainly not!

What they are actually recording is the value of the cumulative den-
sity function. If X is the state of a particle our scientist records f (X )=
CDFX(X ). As we have previously seen, f (X )will be uniformly distrib-
uted over [0, 1] irrespective of where the actual anomalous region is
located.

Let us formalize the situation a little further:

• The scientists know that Y =CDFXi(Xi) for some i<n and have
some prior Pi on i.

• Given the dataset of i.i.d. samples from Y they build a posterior
belief about i.

8 Faried Abu Zaid



But since the likelihood of D does not depend on i there is nothing
they can learn about i from observing D:

Pi(i∣D) =
pD∣i(D∣ i)Pi(i)

pD(D)

= pD(D)Pi(i)
pD(D)

= Pi(i).

Therefore, no matter what they will try to do with the data it will not
help them to identify the anomalous region. But that should make
us doubt whether we should demand that the result of any anomaly
detectionmethod is invariant under reparametrization. Any algorithm
that tries to learn only from D must learn the same anomalous region

5 We can try to bound the
average fraction of fi

−1(χout) that
intersects with the anomalous
region [ in , i+1

n ). Indeed, we can
compute for the average case that:
1
n ∑i=0

n−1 μ(fi−1(χout)∩ [ in , i+1
n ))

μ(fi−1(χout))
≤

1
n ∑i=0

n−1 cμ(fi([ in , i+1
n ))∩ χout)

c
2 μ(χout)

≤

2
n

∑i=0
n−1 μ(fi([ in , i+1

n ))∩ χout)
∑i=0

n−1 μ(fi([ in , i+1
n ))∩ χout)

= 2
n . The

first inequality holds since |∂fi∂x (x)|
={{{{{{{{{{{{{{{{{{{{{{{{{{

c
2 if x ∈ [ in , i+1

n )
c else

for some c>0 and

therefore c
2 μ(f (X ))≤μ(X )≤ cμ(f (X ))

for all measurable subsets X of [0,1].
The second inequality holds since we
have fi([ in , i+1

n ))∩ fj([ jn , j+1
n ))=∅

for i≠ j (checking this is a good exer-
cise). Therefore, any algorithm must
produce a largely wrong result with
μ(fi−1(χout)∩ [ in , i+1

n ))
μ(fi−1(χout))

≤ 2
n in at least

one situation. Since this is unavoid-
able, we ask that the algorithm pro-
duce the same bad result even if we
present the real state Xi instead of
CDFXi(Xi).

𝒳out in the infinite data regime, regardless of the value of i.5

One can take this argument to the extreme and derive the following
normal form for reparametrization invariant learning algorithms.

PROPOSITION 3. For every learning algorithm that is invariant under
reparametrization and every n∈N+ there is some set O ⊆ [0, 1]n such
that for any continuous probability distribution D over ℝn (which fulfills
2) the algorithm outputs fD

−1(O) in the infinite data regime when pre-
sented with data independently drawn from D. The function fD denotes
here the Knothe-Rosenblatt construction w.r.t. D.

That means the algorithm can essentially be specified by some set
O⊆[0,1]which determines the outcome for almost any possible input.
Importantly, this set O is chosen before the data is seen. In the case
of 𝒳 = ℝ the algorithm has a preselected set of percentiles that are
anomalous and he just “estimates” the correct values for them from
the data. Hence, the result has almost nothing to do with the problem
at hand!

As the previous example shows, this unavoidably leads to failures
of the algorithm even for “trivial” instances. Note that the same type of
argument can be applied to many other notions of anomalies (including
those that don't solely depend on the distribution of nominal data).

5 Conclusion

Given the success of non-reparametrization invariant methods in
anomaly detection, the principle seems unreasonably restrictive. How-
ever, I agree that we should have a reference framework for the test
scenario where the problem definition is reparametrization invariant.
Such a framework could be the aforementioned mixture model of
nominal and anomaly distribution. In practice, we mostly have to live
with the fact that only nominal data is available for training. Hence,
I would rather stress that most notions of anomalies are tied to a dis-
tance metric (e.g. implicitly when estimating the density).

The hidden assumptions and pitfalls of density based anomaly detec-
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I think the more interesting question is whether we can learn rep-
resentations that are particularly well suited for anomaly detection. It
is known that deep density models such as normalizing flows do not
necessarily map out-of-distribution data into low density areas of the
latent space [KIW20, ZGR21]. I think this will continue to be a major
research direction in anomaly detection for the upcoming years.

Nevertheless, I believe the paper to be a valuable contribution. The
authors remind us that some common approaches to anomaly detec-
tion should be used with more care. They rest on assumptions that
are not explicitly formulated and lack theoretical justification. Their
article definitely motivated me to revise these foundational questions
with greater care.

Let us wrap up this article with a few takeaway messages:

• Anomaly detection is notoriously ill-defined and arguably sub-
jective to a certain degree. When applying an anomaly detec-
tion method, one needs to ensure that the selected approach
actually captures the notion of anomaly in the application. The
main goal of this article is to convince you that this is not
intrinsic to the algorithms.

• Density based approaches are particularly fragile because the
result can be almost arbitrarily changed by “simple” contin-
uous invertible transformations (as they are routinely applied
to data).

• Additionally, even in the original - usually high-dimensional -
probability space low densities might not coincide with anom-
alous regions because rareness might be tied to a non-Euclidean
notion of similarity. This indicates that anomaly detection
approaches might have the hidden assumption that Euclidean
distance is a suitable measure of similarity.

• Mixture models or likelihood ratio scores against a reference
distribution allow to encode missing information about poten-
tial anomalies to interpret the densities consistently across all
possible reparametrizations.

• However, mixture models / reference distributions need to be
defined in a representation specific fashion which is not always
possible.

• I agree with the ICLR reviewers that even with an infinite
supply of data and capacity no algorithm can guarantee to
eventually learn the anomalous region from nominal data if
arbitrary reparametrizations are allowed. Therefore, one should
not try to enforce reparametrization invariance as a general
principle.

10 Faried Abu Zaid



• We conclude that feature engineering has an even more cru-
cial role in anomaly detection than in other areas of machine
learning. It is the practitioners' responsibility make sure that
the representation of the data and the selected approach are
suitable for each other.

• Learning good representations for anomaly detection remains
a major challenge in machine learning research.
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