
Can perceptual similarity metrics be used to com-
pare adversarial attacks?

Grigor Bezirganyan∗, Aix-Marseille University

December 7th, 2023

Adversarial attacks in computer vision are osten bound in ℓp distance. This precludes
comparing these techniques withWasserstein-based attacks. Aster introducing some clas-
sical perceptual metrics, we investigate empirically whether LPIPS can be used for this
purpose and find that it cannot.
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In Computer Vision an adversarial sample is defined as a perturbed image 𝐱′∈
Rn×n constructed from the original image 𝐱∈ Rn×n, such that the perturbed
image is classified differently from the original image by a model F:Rn×n→N,
but it is still classified correctly by a human. The problem of crasting adver-
sarial samples can thus be formulated as finding a perturbation 𝐱↦η(𝐱) such
that F(𝐱)≠F(𝐱+η(𝐱)), but which is imperceptible by humans, defined as being
smaller than some ϵ>0 in a given norm.

The most common norm taken is ℓp [GSS, KGBa], i.e. ‖η‖p ⩽ ϵ. However,
as [SBR] show, ℓp norms are not suitable for crasting and comparing adver-
sarial attacks, as it is possible to crast samples that have a small ℓp distance
from the source image, but are perceptually very different, and vice versa.
To remedy this, subsequent works suggest other norms. [WSK] propose the
Wasserstein distance, which restricts the amount of pixel mass that can be
moved to get one image from the other. Later, [WWY] and [HSSY] indepen-
dently proposed improvements to the original idea, to make it stronger and

1 To the best of our knowledge there is no
comparison between these two methods,
and at the end of the article we will
provide one.

faster.1Note however, that while we can compare adversarial attacks using ℓp
distances with each other, or different attacks based onWasserstein distance,
it is not possible to directly compare ℓp attacks with non-ℓp ones in terms of
the amount of perturbation.

Of course one can usemisclassification, but since the goal of the adversarial
attacks is to stay unnoticeable for humans, it would be very convenient to
have a similarity metric that aligns with human judgment. Here, we discuss
usage of so-called perceptual similarity metrics for comparing adversarial
attacks, and show that they are not suitable because they can be fooled by
adversarial samples.

1 Perceptual Similarity Metrics

As motivation for the metric we use, we quickly recall first how three clas-
sical similarity metrics are built. The first, SSIM aggregates rough pixel infor-
mation globally. The second, MSSIM, does so in patches to allow for some
locality. The third, FSIM, looks at engineered low-level features. Aster these,
a natural step presents itself: to use learned features, as does LPIPS, or, going
a bit further, an ensemble of them, in E-LPIPS.

1.1 (Mean) Structural Similarity Index (SSIM)

One of themost popular perceptual similarity metrics is the Structural Simi-
larity Index (SSIM) [WBSS]. Because the human visual system (HVS) attends

∗. Work done while interning at the appliedAI Initiative GmbH during Fall 2022.



to the structural information in a scene, SSIM separates the task of similarity
measurement into three comparisons: luminance, contrast , and structure.

The means of pixel values μx and μy are used to assess the similarity in
luminance between the two images, while the standard deviations σx and σy
measure contrast, and the covariance σxy represents structural differences.
The comparison function is a function of these quantities, which under some
simplifying assumptions becomes:

SSIM(𝐱,𝐲)≔ (2μxμy +C1) (2σxy +C2)
(μx2 +μy2 +C1) (σx2+σy2+C2)

, (1)
2 These are included to avoid a division
by zero or by a very small denominator,
and are usually defined in terms of the
dynamic range of the images and small

tunable constants.

where C1,C2> 0 are small stabilizing terms.2 The authors observe that this
kind of global similarity measurement may not work well, and they suggest
applying the function locally in different regions of the image and then com-
pute the mean. This is known as theMean Structural Similarity Index or
MSSIM.

MSSIM(X,Y)≔ 1
M �

j=1

M

SSIM(𝐱j, 𝐲j). (2)

1.2 Features Similarity Index Matrix (FSIM)

[ZZMZ] argue that SSIM has the deficiency that all pixels have the same
importance, but the HVS attributes different importance to different regions
of an image. The authors argue that the HVS mostly pays attention to low-
level features, such as edges or other zero crossings, and suggest comparing
two sets of features:

Phase Congruency (PC) PC is a measure of the alignment of phase across
different scales of an image and is a feature that is considered to be invariant
to changes in brightness or contrast. It is believed to be a good approxima-
tion to how the HVS detects features in an image because the latter is more

3 According to the authors: Based on the
physiological and psychophysical evidences,
the PC theory provides a simple but biolog-
ically plausible model of how mammalian
visual systems detect and identify features

in an image. PC can be considered as a
dimensionless measure for the significance

of a local structure. [ZZMZ] sensitive to structure than to amount of light.3

The computation of phase congruency involves several steps (for details, see
[ZZMZ]). First a decomposition using wavelets or filter banks, then pixel-
wise extraction of phase information, followed by a comparison of the phases.

Gradient magnitude (GM) Image gradient computation is a cornerstone
of image processing, e.g. for edge detection (high luminance gradients). The4 Tomake notation more explicit, we con-

sider images as maps from coordinates x
to channels f (x)=𝐱.

GM of image f (x) is the Euclidean norm of the gradient: G(x)≔ ‖∇f (x)‖2.4

For color images, PC and GM features are computed from their luminance
channels. Given images fi and corresponding features GMi and PCi, i= 1,2,
SPC, the harmonic mean of the PCs, and SGM, the harmonic mean of the GMs
are combined into the Features Similarity Index score:

SL(x)≔ [SPC(x)]α [SG(x)]β, (3)

where α ,β are parameters to tune the effect of PC and GM features.

1.3 Learned Perceptual Image Patch Similarity (LPIPS)

[ZIE+] choose a different strategy for computing similarity. They argue that
internal activations of neural networks trained for high-level classification
tasks, even across network architectures and without further calibration, cor-
respond to human perceptual judgments.
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To get the similarity metric between two images 𝐱, 𝐱0 with a neural net-
work F , they extract features from L layers and unit-normalize in the channel
dimension. For layer l those become ŷ l, ŷ0l . Then, they scale the activations
channel-wise with vectors w l ∈ ℝCl and compute the ℓ2 distance between
the respective activations for each image. Finally, they compute the spatial
average and sum channel-wise. The complete metric is:

dLPIPS(𝐱,𝐱0)≔�
l

1
HlWl

�
h,w

|wl ⊙ (ŷhwl − ŷ0hw
l )|22. (4)

The weights wl are optimized such that the metric best agrees with human
5 A 2AFC test is a psychophysical method
used to measure an individual's perception
or to make decisions between two alter-
natives under forced conditions. It's com-
monly used in sensory testing, where a
subject is presented with two stimuli and
is required to choose one according to a
specific criterion.

judgment derived from two-alternative forced choice (2AFC) test results.5 In
the 2AFC task an image is presented to a human subject together with two
distorted versions of the source image. The goal is to choose which of the
altered images is closer to the original.

After tuning LPIPS, the authors evaluate several similarity metrics
(including SSIM and FSIM) on a separate dataset and compute agreement of
the algorithm with all of the judgments. To aggregate information, if p frac-
tion of the humans vote for image 1 and 1−p fraction vote for image 2, the
human will get a score of p2+ (1−p)2.

Figure 1. Quantitative compar-
ison. Authors show a quantitative
comparison across metrics on the test
sets. (Lest) Results averaged across
traditional and CNN-based distor-
tions. (Right) Results averaged across
4 algorithms.

Distor tions Real algor ithms

H
u
m

a
n

L
2

S
S
IM

F
S
IM

c

H
D

R
-V

D
P

R
a
n
d
N

e
t

K
m

e
a
n
s

W
a
tc

h
in

g

S
p
li
tB

ra
in

P
u
z
z
le

B
iG

A
N

S
q
u
e
e
z
e

A
le

x

V
G

G

S
q
u
e
e
z
e

A
le

x

V
G

G

S
q
u
e
e
z
e

A
le

x

V
G

G

S
q
u
e
e
z
e

A
le

x

V
G

G

50

55

60

65

70

75

80

85

2
A

F
C

 s
c
o
re

 [
%

]

Human

Low-level

Net (Random)

Net (Unsupervised)

Net (Self-supervised)

Net (Supervised)

LPIPS (linear)

LPIPS (scratch)

LPIPS (tune)

H
u
m

a
n

L
2

S
S
IM

F
S
IM

c

H
D

R
-V

D
P

R
a
n
d
N

e
t

K
m

e
a
n
s

W
a
tc

h
in

g

S
p
li
tB

ra
in

P
u
z
z
le

B
iG

A
N

S
q
u
e
e
z
e

A
le

x

V
G

G

S
q
u
e
e
z
e

A
le

x

V
G

G

S
q
u
e
e
z
e

A
le

x

V
G

G

S
q
u
e
e
z
e

A
le

x

V
G

G

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

2
A

F
C

 s
c
o
re

 [
%

]

Human

Low-level

Net (Random)

Net (Unsupervised)

Net (Self-supervised)

Net (Supervised)

LPIPS (linear)

LPIPS (scratch)

LPIPS (tune)

In Figure 1, we see that LPIPS has a higher 2AFC score than the SSIM or
FSIM measures or the ℓ2 distance.

However, a problem with the LPIPS distance is that since it uses activa-
tions of Deep Neural Networks, it is prone to adversarial attacks itself. Hence,
[KHL] introduced the E-LPIPS or Ensembled LPIPS. They transform both
input images using simple random transformations and define:

dE-LPIPS (𝐱,𝐲)≔𝔼[dLPIPS (T (𝐱),T (𝐲))], (5)

where the expectation is taken over a family of image perturbations. The
authors claim that the E-LPIPS model is more robust but has the same predic-
tion power.

2 Problem Setting

As previously discussed, our main goal is to determine whether perceptual
metrics can be used to compare adversarial attacks in image classification.
We focus on LPIPS for its popularity and because it more closely aligns with
human ratings than other ones (Figure 1).

Can perceptual similarity metrics be used to compare adversarial
attacks? 3



[KHL] showed that LPIPS is sensitive to adversarial samples, but used
attacks specifically targetting it. If generic adversarial attacks for image classi-
fication transferred poorly to an LPIPS network, then LPIPS could be consid-
ered for perceptual evaluation of adversarial attacks.
Consider a target network FT , and an attack 𝐱↦𝐱′≔𝐱+η(𝐱) perturbing 𝐱

by some η s.t. ‖𝐱−𝐱′‖< ε in some norm. Note that induced by the distribution
of images 𝐱 ∼ 𝐗, one has a distribution of perturbations 𝛈 ∼ η(𝐗). We can
define an attack transfer from classification to LPIPS as successful if the
quantity

𝔼𝐱,𝛈[|dLPIPS(𝐱,𝐱+η(𝐱))−dLPIPS(𝐱,𝐱+𝛈)|]

is large enough. To compute this, we take 𝐱 ∈Dtrain and approximate 𝛈 by
independently sampling from the set {𝛈(𝐱): 𝐱 ∈Dtrain}. Using only the first
moment is however less informative than comparing the full distributions of

6 A simple approach here would be to use
a non-parametric test like Kolmogorov-
Smirnov. However, in our experiments,
visual inspection and Wasserstein pro-

vided ample evidence. distances, e.g. with the Wasserstein metric.6

That is, the classification attack transfers to LPIPS successfully when LPIPS
believes the adversarial samples 𝐱 + η(𝐱) to be generally much closer to, or
farther apart from the source images 𝐱, than from randomly, but not adversar-
ially perturbed images 𝐱+𝛈 (although visually very similar to the adversarial
samples these are not specifically designed to fool the network on a particular

7 Here we are glossing over the fact that
𝐱+𝛈, where 𝛈 is sampled independently
from 𝐱 might not be as imperceptible a

modification as 𝐱+η(𝐱).

sample).7 Our hypothesis is that since LPIPS works on top of convolutional
networks designed for image classification (i.e. VGG, RESNET, ALEXNET), then
adversarial samples crasted for those networks will fool LPIPS as well, and
hence it cannot be used to compare adversarial attacks.

3 Experimental setup

To test out the hypothesis we design the experiment following the description
above. We construct adversarial samples 𝐱′ from source images 𝐱 ∈Dtrain,
and samples 𝐱′′ ≔ 𝐱 + 𝛈 which are visually similar to the adversarial sam-
ples but remain classified with the correct label (fake adversaries). Then, we
will compare the distributions of the scores and if there is a significant dif-

8 There are then three sets of images: orig-
inal, adversaries, and fake adversaries. We
compare the distances between first and

second, to the distances between first and
third set.

ference in distributions, our hypothesis will be verified.8

We work with the IMAGENETTE dataset [AI], which is a subsample of 10
classes from the IMAGENET dataset [DDS+]. For the attacks we consider a pre-
trained VGG-11 architrecture [SZ] and crast adversarial samples with Pro-
jected Gradient Descent (PGD) [KGBb],Wasserstein Attack using FrankWolfe
method with Dual Linear Minimization Oracle (FW + Dual LMO) [WWY],
and Improved Image Wassertain attack (IIW) [HSSY]. We use multiple tol-
erance radiuses ϵ∈ [0,1] for each method.
To create the fake adversaries we take perturbations at random from all

those used for crasting the adversarial samples and add them to the source
images:

fi≔C[0,1][𝐱i+ηj], (6)

where 𝐱i is a source image, ηj is a perturbation sampled at random from
those applied to generate adversarial samples, and C(⋅) is a clipping func-
tion. We construct 10 fake adversaries for each source image, by adding 10
different perturbations from adversarial samples. A batch size of 64 is used
for all the attacks. We use the LPIPS [ZIE+] metric for computing the dis-
tances with three different pre-trained bakends: VGG-16, ALEXNET [KSH] and

9 We chose these distance networks for
consistency with the official LPIPS imple-

mentation. SQUEEZENET [IHM+] (the distance network).9 The target network for all
the experiments discussed here is only VGG-16. We use the implementa-
tions from the official PYTORCH repository [PGM+].
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10 github.com/bezirganyan/adversarial_arenaThe source-code10 is open-sourced and a demo is available for interactively
11 bezirganyan-aai-adversarial-arena-
demo-main-58mbz2.streamlitapp.com

exploring the results.11

4 Results

4.1 Measuring effectiveness of attack transfers

As a baseline, we explore if samples built against the VGG-16 network transfer
to LPIPS with a VGG-16 backend. Taking ϵ = 0.05 (the smallest we used for
the PGD attack) we obtain a misclassification rate of 0.99 on adversarial sam-
ples and 0.072 on fake adversaries (recall: perturbed but not adversarial). The
LPIPS score distributions are shown in Figure 2.

Figure 2. LPIPS score distributions
for PGD attack with ϵ=0.05.
Backend: VGG-16.
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As expected, we see that LPIPS scores on adversarial samples tend to be
higher than on fake samples, and quite unsurprisingly conclude that LPIPS
metrics with a VGG-16 backend cannot be used for comparing adversarial
attacks against VGG-16 networks, as the LPIPS metric itself is affected by

12 For adversarial samples we only take
into account those which were succesful
attacks, and for the fake adversaries only
perturbed images which did not misclas-
sify (successful fake attacks). Hence, when
the cardinality of either of the sets is low,
we will have lower number of samples,
and hence, bigger bins for the histograms.

adversarial perturbations.12

However, what if we use LPIPS with other backend networks? From
the transferability property of adversarial attacks to different networks we
hypothesize that these metrics will be affected as well. To test this, we run the
same experiment using ALEXNET [KSH] and SQUEEZENET [IHM+] as back-
ends for LPIPS. Whether or not the classification of an adversary is correct
is determined by these target networks.

In Figure 3 we have the LPIPS scores with an ALEXNET backbone. We can
see that the distributions are much closer and have a much smaller Wasser-
stein distance of 0.005, compared to the 0.181 with the VGG backend. In
Figure 4 we observe a similar pattern.

From these plots we hypothetise that our initial assumption was incorrect,
and the ℓ∞-PGD adversarial attacks do not trasfer to LPIPS with these back-
ends. However, in order to be able to use this metric for comparing PGDwith
Wasserstein methods, we must check transferability for the latter as well.

Can perceptual similarity metrics be used to compare adversarial
attacks? 5
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Figure 3. LPIPS score distributions
for PGD attack with ϵ=0.05.

Backend: AlexNet.
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Figure 4. LPIPS score distributions
for PGD attack with ϵ=0.05.

Backend: AlexNet.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
LPIPS score

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ilit

y

Wasserstein Distance: 0.007
Perturbed Images
Adversarial Images

4.2 Can we use LPIPS to compare Wasserstein and ℓp attacks?

To make our experiments with Wasserstein attacks comparable, we use an ϵ
that yields a VGG-16 misclassification rate similar to the one obtained with
the PGD attack (98.94%).

Figure 5. LPIPS score distributions
for FW+Dual LMO attack with ϵ=

0.0335. Backend: AlexNet.
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In Figures 5, 6, 7, and 8 we can clearly see thatWassertein attacks on VGG-
16 transfer succesfully to other networks and hence affect the LPIPS score.
This indicates that the LPIPS perceptual metric cannot be used for comparing
Wasserstein adversarial attacks with other adversarial attack methods.

Figure 6. LPIPS scores distributions
for FW+Dual LMO attack with ϵ=
0.0335. Backend: SqueezeNet.
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Figure 7. LPIPS scores distribu-
tions for IIW attack with ϵ=0.32143.
Backend: AlexNet.
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Figure 8. LPIPS scores distribu-
tions for IIW attack with ϵ=0.32143.
Backend: SqueezeNet.
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5 Conclusions

In this article we investigated whether adversarial attacks can be compared
using LPIPS. We crasted adversarial samples against the VGG-16 network,
and also crasted non-adversarial samples with similar perturbations, which
are classified correctly. Comparing the LPIPS score distributions between
the source images and the adversarial samples, and source images and the
perturbed but not adversarial images, we observed that the distributions are
significantly different from each another, which suggests that although the
perturbations were similar, the adversarial perturbation changed the activa-
tion values in a way that makes LPIPS not suitable for comparing adversarial
attacks, since it is also being fooled. Thefore, human surveys are still nec-
essary for now.

We also saw that while for PGD attacks with ℓ∞ norm the attack did not
transfer well to LPIPS with other networks as backends, Wasserstein attacks
achievedmuch higher transferability. This is a point in favour ofWasserstein
attacks, since the attacker can create samples without knowing the under-
lying architecture of the target network, and still hope for good results.

A Comparing FW+Dual LMO and IIW attacks

As we mentioned earlier, to the best of our knowledge there is no compar-
ison between the FW+Dual LMO [WWY] and IIW [HSSY] attacks, although
they both are improvements of the original Wasserstein Attack [WSK]. We
report in passing a quick comparison of duration andmisclassification rate as
a function of budget ϵ>0. We run the attacks on the same set of images from
IMAGENETTE using their default parameters.

Figure 9. Misclassification rates
and Time (sec/batch) of Wasserstein

attacks as a function of budget ϵ.
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In Figure 9 we see that FW+Dual LMO has much better misclassifcation rate,
but IIW finds adversarial samples much faster for larger budgets, while the dif-
ference of durations is comparably very small for FW+Dual LMO attacks. On
average the IIW attack is almost twice as fast (329 sec/batch) than FW+Dual
LMO (902 sec/batch). From Figures 7, 8, 9, and 10, we can say that IIW attempts
smaller changes to the activations, but also achieves lower misclassification
rate, while FW+Dual LMO makes bigger changes and achieves a higher mis-
classification rate.
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Figure 10. LPIPS scores distribu-
tions for IIW attack with ϵ=0.0005.
Backend: SqueezeNet.
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B Bi-modality in the distance distributions

An intriguing detail in Figures 7 and 8 is that the score distributions on adver-
sarial images (blue) have two modes: one very close to 0, and another one
beyond the mode of the fake adversaries (orange). To investigate this behav-
iour further, we check the score distributions of the IIW attack under different
values of ϵ. For ϵ=0.0005 (Figure 10) we notice that there is only one mode
for the adversarial distribution, but the scores are lower than the ones of the
fake adversarial distribution. 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
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Figure 11. Fitted modes of the adversarial
(blue) and perturbed (orange) distributions
(using a Gaussian Mixture Model, and a
single Gaussian respectively), and misclas-
sification rate (green) for the IIW attack
and VGG as LPIPS backend. While at some
point the misclassification rate plateaus, the
mode of the adversarial distribution keeps
increasing.

This indicates that under low values of ϵ, the IIW attack manages to sucess-
fully create adversarial samples with smaller changes in the activations than
similar random perturbations. When ϵ increases, the attack is allowed to
add more aggressive perturbations up to the allowed budget. While for some
small set of images the activations remain small, for most of them more per-
turbation changes the activations more, and hence, the blue distribution shists
to the right as in Figures 7 and 8. See Figure 11 for a quick empirical check.
Another check to substantiate our reasoning behind the two modes is to

visually compare images from each one. In Figures 12 and 13 we see samples
from both parts of the bi-modal adversarial distribution. We can see that the
ones which have LPIPS distance from source images closer to the smaller
mode (i.e. dlpips< 0.2), are almost indistinguishable from the source images,
while the ones with LPIPS distance closer to the second mode (i.e. dlpips<0.2)
have very noticeable perturbations.
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Figure 12. Adversarial samples and their source images crasted with IIW attack with ϵ = 0.32143, with low LPIPS scores
between the source and the resulting adversarial sample (dlpips<0.2).
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Figure 13. Adversarial samples and their source images crasted with IIW attack with ϵ = 0.32143, with high LPIPS scores
between the source and the resulting adversarial sample (dlpips⩾0.2).
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