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We discuss the calibration of probabilistic classifiers, i.e. the question of whether
the output vectors of such classifiers accurately approximate true class probabil-
ities (or, in practical terms, frequencies on a test set). Despite being of relevance
for many applications which need to model uncertainty and the fact that many
commonly used neural networks tend to be miscalibrated, this topic is underrep-
resented in the ML community. We explain the subtleties involved in measuring
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calibration and recalibrating models.

1 An overview of calibration

In practical applications, output vectors of probabilistic classifiers such
as neural networks or random forests are always used for decision
making in one way or another. Depending on the context of the deci-
sion, certain properties of these output vectors might be more relevant
than others. For example, if the task at hand is purely a classifica-
tion - say an input image needs to be labeled as frog, cat or human
by the model - only the prediction, i.e. the argmax of the output vector
plays a role. A slightly more demanding application of the same clas-
sifier would be to label an image as “unknown” if the confidence in
the prediction is below a certain threshold. Then, not only the argmax
but also the actual value of the maximal confidence is needed. Even
more demanding decisions can require the entire confidence vector,
for example the decision whether to turn the wheel of a car at high
speed to avoid hitting something, at the cost of risking an accident.
In such a situation, it is important to take all confidences into account.
We might want our system to behave differently when there is a 40%
chance that the recognized object is a human vs. a 40% chance of it
being a cat, even if the prediction is “frog” with 60% confidence in
both cases

For decision making as in the last two examples, it is important that
confidence vectors are meaningful quantities. Ideally, we would like
them to correspond to real probabilities in some sense - this is why we
call the classifier probabilistic aster all. Unfortunately, modern neural
networks trained with gradient descent (but also other models like
random forests), despite osten being very accurate, tend not to output
empirically valid probabilities. This phenomenon is osten called “mis-
calibration of modern neural networks”.

As we will explain in the sections below, calibration is a topic with
many nuances. While there is quite some active research, it is somehow
underrepresented in the machine learning community. We believe



that this is firstly because there are many situations in which only
metrics related to accuracy matter, and secondly because even in sit-
uations in which calibration is very important, it is not entirely clear
how to measure its effect. To remedy this and to bring measurements
of calibration closer to the needs of practitioners, we propose an appli-
cation-centric scheme for studying the effects of miscalibration in Sec-
tions 4 and 6. We also publish an open-source python library aimed
at helping with all the topics related to calibration mentioned in this
review, see [PSB].

1.1 Definition of strong calibration

A probabilistic classifier learns to predict confidences from inputs. For
an input x , the output of the classifier is a confidence vector which
we denote c(x)= (c1(x), . . . , cK(x)), where K is the number of classes.
For our purposes, we can assume that c is a deterministic function of
x . In most of what follows, we will not be concerned with the input,
so we will omit the dependency on it. This means that c will typically
denote the confidence vectors themselves and, sometimes, the clas-
sifier as a function mapping inputs to confidences; it should always
be clear from the context what is meant by c. We assume that the
confidences are always properly normalized, so that ∑ ck=1.

Loosely speaking, we call a classifier calibrated if at test time the
confidence vectors represent true probabilities, i.e. when for all k ∈
{1, . . . ,K}:

pobserved(true label isk ∣ confidence is c)= ck.

We can formulate this more rigorously as follows: Let X ,Y be random
variables representing inputs and ground truth labels. The random
variable C := c(X ) of confidence vectors takes values in the (K − 1)-
dimensional simplex ΔK−1. We are interested in the true probabilities
of the ground truth labels given that a certain confidence has been
observed, i.e. in the distribution of Y ∣C , which we will approximate
using a test set. The vector of quantities ℙ(Y = k∣C), k ∈ {1. . .K} is a
deterministic function of C : the canonical calibration function, r :

1 Here, and from now on, we use vector nota-
tion for class probabilities: when we write Y we

mean Y =k for all k

ΔK−1→ΔK−1, given by1

r(C) :=ℙ(Y ∣C). (1)

When the distributions have densities, rk(c) = p(k∣ c), where p(k∣c)
is the conditional density of Y ∣C . Because we will take expectations
wrt. to C , we are only interested in the region of ΔK−1 where p(c)>0.
Assuming that (Y ,C) has a density, the canonical calibration function
is well defined everywhere in this set [Kle, Ex. 8.31]. For this reason,
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in the sequel we will assume in computations that p(y∣c) = 0 where
p(c)=0.

Note that, because C is a random variable, r ∘C is also a random
variable. A probabilistic classifier c is called strongly calibrated iff
the canonical calibration function is the identity, i.e. iff

c(X )= r(c(X )). (2)

Any metric that vanishes when C and r ∘C are equal almost surely,
or equivalently when r is the identity function almost everywhere,
is thus a metric of strong calibration. In particular, the Lp norms on
the simplex (the range of c(X )) form such metrics, and we have the
condition that c is strongly calibrated iff

‖id− r‖p =0.

In general, accuracy and calibration are, to an extent, independent of 2 Although we will show that in many situa-
tions of practical relevance there are general
relations between both

each other.2 A classifier can be perfectly accurate but not calibrated
and perfectly calibrated but inaccurate. As an example for the former,
think of a classifier that always predicts correctly but does so with a
confidence of 1/K + ε (where ε is some small positive number). The
accuracy is 1 but clearly the classifier is under-confident, because being
always correct means that ℙ(Y =k∣c(x))=1≠ck(c)=1/K +ε , and hence
it is not calibrated. On the other side of the spectrum, a classifier which
always predicts the (constant) population fractions is perfectly cali-
brated but generally inaccurate.

1.2 Why models are miscalibrated

Usually the objective on which a probabilistic classifier is trained is
a so-called proper scoring rule [LPB], which for our purposes we
can interpret to mean that the training objective reaches its optimum
iff the confidence vectors outputted by the classifier are equal to the
true conditional distribution of labels given inputs. Cross entropy and
the so-called Brier score (the usual MSE between predictions and one-
hot encoded labels) are proper scoring rules [LPB]. If the predictive
distribution of a classifier parametrized by θ is denoted as pθ(y∣ x),

3 Once the classifier is fixed, the predictive
probability pθ(y∣x) is the same as c(x) in the
previous section, i.e. pθ(k∣x)= ck(x)

then a proper scoring rule is optimized at θ ∗ iff3

pθ ∗(y∣x)=ℙ(Y =y∣x). (3)

This means that if a classifier optimizes a proper scoring rule, it is both
maximally accurate and perfectly calibrated. In this case, we say that
pθ is the best possible classifier.
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Why, then, are modern neural networks osten miscalibrated despite
being trained on a proper scoring rule? The empirical observation is
that they sacrifice calibration for accuracy, meaning that aster a cer-
tain amount of training, the out-of-sample calibration begins to decline
while the out-of-sample accuracy continues to improve. This was first
noticed in [GPSW] where several aspects of neural network miscal-
ibration are explained in detail. There is however no solid theoretical
understanding of why this happens, although experimentally, higher
model capacity, batch normalization as well as low or no weight decay
tend to reduce calibration.

Since the scoring rules measure calibration and accuracy simultane-
ously, miscalibration cannot be reliably captured by purely evaluating
the training and validation losses (although in experiments one does
see a decrease in calibration manifest itself as an increase in the test
loss) and one has to resort to metrics that specifically target calibra-
tion.

1.3 Strong calibration and best possible post-processing

The optimality condition of a proper scoring rule is very similar to
the condition for being strongly calibrated. Rewriting equation (3) in
terms of random variables we get: a classifier c optimizes a proper
scoring rule iff (remember that we use vector notation for probabili-
ties)

c(X )=ℙ(Y ∣X ). (4)

The only difference with respect to the definition of strong calibra-
tion is that we condition on X instead of c(X ) on the right hand side.
This is not a coincidence: Imagine that instead of samples from X we
observe samples from g(X ), for some g . Now we need a classifier
taking g(X ) as input. The best possible classifier we could have, let
us call it c⋆∣g , would optimize some proper scoring rule and fulfill

c⋆∣g (g(X ))=ℙ(Y ∣g(X )).

Setting now g = c, the original classifier, follows that reaching strong
calibration for the original problem just means obtaining the best pos-
sible classifier given that one only observes c(X ) and not X directly. We
call this the best possible post-processing classifier and it fulfills:

c⋆∣c (c(X ))=ℙ(Y ∣c(X ))= r(c(X )),

where r is the canonical calibration function for c. We have then

c⋆∣c =r ,
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and the immediate observation that any classifier c that is already
strongly calibrated cannot be improved through post-processing , where
“improvement” means according to some metric of strong calibration,
e.g. the Lp norms mentioned above.

One property differentiating the analysis of calibration from classifi-
cation aster generic preprocessing is that by definition the inputs c(X )
to the function r will live in the same space as the outputs, namely
in ΔK−1. Therefore, the canonical calibration function and approxima-
tions to it can be interpreted geometrically as simplex automorphisms.

Thus, optimizing calibration by post-processing the classifier's
output is equivalent to finding the overall best possible post-processing
classifier, and the optimum is an approximation to the canonical cal-
ibration function r . One way of obtaining it is to fit a parametrized
function using a proper scoring rule, which will osten be the same

4 Alternative non-parametric methods estimate
r directly from the sample statistics. These tend
to perform worse for large K , because of the
difficulties involved in estimating probability
distributions in high dimensions. For instance,
the number of bins in typical binning schemes
grows exponentially with the dimension

loss used to train the original classifier.4 The choice of this function
is important, for it should counteract the tendency to over-fit in favor
of accuracy described above. Stacking a neural network with the same
tendency on top of another neural network is not helpful (although
stacking a small NN on a random forest which was not trained on
a proper score might work). Therefore, will need to resort to more
restricted families of functions. The simplest example considers con-
stant multiplications of the logits. Because these do not affect accuracy,
a decrease in the post-processing training loss will be a reliable indi-
cator of improved calibration. See Section 5.1 for details.

1.4 Other notions of calibration

Strong calibration is not the only useful calibration property one can
define, although it is the most general one. Other notions of calibra-
tion can arise by conditioning on a function of C instead of on C itself.
For example, by conditioning on the confidence in the predicted label,
in a similar fashion as for the canonical calibration function (1) one
can define the confidence calibration function rmax: [1/K , 1]→ [0,
1] as

rmax(max (C)) :=ℙ(Y =argmax(C)∣max(C)).

As for strong calibration, one is only interested in rmaxwhere it can be
defined, i.e. where the density of max(C) is positive, and it is set to 0
everywhere else.

By conditioning on the confidence of a fixed label k, one arrives at
the class-wise calibration function rk: [0, 1]→ [0,1], with

rk(Ck) :=ℙ(Y =k∣Ck).
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The classifier is called confidence calibrated iff rmax= id and class-
wise calibrated for class k iff rk = id. Below we define calibration
metrics inspired by these reduced notions. Both definitions are spe-
cial cases of the concept of a calibration lens introduced in [VWA+]
which can be used to create calibration functions in a similar fashion.
All such calibration functions are equal to the identity function if the
strictly stronger condition of strong calibration holds.
The confidence and classwise calibration functions introduced above

can be understood as canonical calibration functions of induced binary
classifiers that predict two-dimensional confidence vectors as (max(C),

5 The induced labels are then defined as
Ybinary=1{argmax(C)}(Y) or Ycw=1{k}(Y)

respectively 1−max(C))and(Ck, 1−Ck) respectively.5 From the discussion in Sec-
tion 1.3 one can conclude that a confidence- or class-wise calibrated
classifier is the best possible classifier that can be obtained by post-pro-
cessing these induced classifiers.

2 Measuring calibration

Unlike metrics focused on the quality of predictions like accuracy, pre-
cision, or recall, there is no consensus about the best way to measure
(or visualize) calibration. There are several reasons for that.

1. Definition: r(C) is a vector-valued quantity, as is r(C) −C .
Depending on the situation at hand, different aspects of it are
more relevant than others.

2. Estimation: Typically, expressions involving r(C), like expec-
tation values, are difficult to estimate using a finite set. This
is especially true for problems where the number of classes K
is large. As explained in Section 1.3, a good estimate of the
canonical calibration function can be used to recalibrate the
classifier, thus estimating r directly is as hard as recalibrating .

3. Optimality: While the commonly used losses are usually
proper scoring rules and decreases in them over a test set can
signalize better calibration, they generally do not vanish for
strongly calibrated classifiers (nor do they vanish for the overall
optimal classifier). Therefore, they are not proper measures of
calibration.

4. Comparison: Numerical values of miscalibration should be
comparable across different data distributions, something that
does not happen e.g. for loss functions. Unfortunately, most
common calibration metrics, like those introduced below, do
not have this property.

Finally, while a useful classifier always has to be accurate to some
degree, calibration is often optional or even unnecessary. E.g. for appli-
cations like picking the most probable class or clustering that only
require the predicted value (the argmax), there might be no need to
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6 Nevertheless, one could argue the advantage
of taking calibration into account for most deci-
sion problems using probabilistic classifiers

measure calibration at all.6 This shows that in practical situations,
measuring calibration should be done in a way that is useful for the
problem at hand. We will elaborate on this in Section 4.

2.1 Calibration metrics and reliability curves

To overcome the difficulties outlined above, a scalar value representing
miscalibration which vanishes when a classifier is strongly calibrated

7 However, we will see examples which vanish
without the classifier being strongly calibrated

and an estimator for it.7 The latter is osten defined through binning.
Such scalar values are called calibration metrics. They necessarily
obscure some properties of r(C) that might be relevant for applica-
tions. Thus, in a decision making scenario it might be necessary to
consider multiple calibration metrics or to create a custom one.

The simplest metrics are obtained focusing on the calibration either
of a single class, or of the predictions. They also give rise to visu-
alizations of miscalibration, as we explain below. The well known
expected calibration error, ECE, stems from confidence calibration
and is defined as follows. First introduce the one dimensional random
variable Z :=max (C), which we assume to have density p(z). The
ECE is computed by conditioning on Z (as opposed to conditioning

8 For the domain of integration, note that the
maximum of aK -dimensional confidence vector
is always larger or equal than 1/K , so p(z)=
0 for z∉ � /1K , 1�

on the full confidence vector C as above) as8

ECE := 𝔼Z (|ℙ(Y =argmax(C)∣Z )−Z |)

= �
/1K

1
p(z)|ℙ(Y =argmax(C)∣Z =z)−z|dz.

The last equation also suggests a method to estimate the ECE by bin-
ning the one-dimensional domain of Z and evaluating the empirical
probabilities within the bins. The integral then turns into a sum over
the bins.

Note that the ECE is zero only if |ℙ(Y =argmax(C)∣Z =z)− z| van-
ishes a.s. wrt. Z . This function can be conveniently visualized by
plotting z on one axis and ℙ(Y =argmax(C)∣Z =z) on the other. The
resulting graph is called reliability curve. For a confidence calibrated
classifier (and hence for a strongly calibrated one too), the reliability
curve is exactly diagonal. Note that such a visualization can be mis-
leading since it does not take into account p(z), which for a binning
scheme is approximated by the fractions of data points per bin and
can be thought of as weights. The reliability curve might be far from
the diagonal in some bins but the ECE could still be small if the pop-
ulation fractions in these bins are low. The intuition here is that the
reliability curve just shows how miscalibrated a prediction is for all
possible confidences while the ECE also takes into account how osten
such confidences are actually returned by the classifier.

Similarly, instead of focusing on the predictions we can calculate
class-wise calibration errors and reliability curves for selected classes.
Let p(ck) stand for the marginal probability density of the 1-dim.
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9 Here, contrary to the density for the predicted
class, p(ck) is defined on the whole interval

[0, 1]

random variable Ck=ck(X ) - the confidence of class k.9 We can define
the class-wise expected calibration error cwECEk as

cwECEk := 𝔼Ck(|ℙ(Y =k∣Ck)−Ck|)

= �
0
1
p(ck)|p(k∣ ck)−ck|dck,

cwECΕ := 1
K�

k
cwECEk.

Again, one can estimate this with binning and visualize |ℙ(Y =k∣Ck=
ck)− ck| using reliability curves. These approximate the reduced cali-
bration functions defined in Section 1.4.
Note that conditioning on the prediction Z or a single confidence Ck

is not the same as conditioning on the full vector, even aster taking the
expectation values. In other words, in general (note that the expecta-
tions are taken wrt. C ):

cwECEk ≠ 𝔼C(|rk(C)−Ck|),
ECE ≠ 𝔼C(|P(Y =argmax(C)∣C)−max(C)|).

In fact, a classifier might have all class-wise calibration errors equal
to zero (and also ECE being zero) but still not be strongly calibrated!
See [VWA+] for an example. There has been effort to design metrics
which are better at capturing strong calibration and to devise statis-
tical tests for strong calibration [WLZ, VWA+]. However, demanding
strong calibration might be too much to ask for specific applications,
where only certain aspects of calibration may matter.
Themethods outlined above demonstrate that there is no single one-

fits-all solution for measuring calibration. The commonly usedmetrics
always obscure some aspect of calibration and the full strong calibra-
tion is difficult to evaluate and may be not needed.

3 Computing and visualizing miscalibration

We now elaborate on the computation of calibration metrics and reli-
ability curves using a finite data set D. We will focus on the ECE but
the same considerations apply to cwECE and similar metrics.

3.1 Estimating naively with binning

The most straightforward way of estimating the ECE is with a con-
stant binning scheme: Let P :=�b0=

1
K ,...,bN� be a uniform partition of

the interval [1/K , 1] in N bins Ij =[bj−1,bj), with IN = [bN−1,bN]. The
corresponding estimator ECEP ;D takes the form

ECEP ;D = �
m=1

N
Nm
|D| |accm;D −confm;D|,
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where Nm is the number of samples in binm, and, letting Z =max(C)
as above,

accm;D := ℙ̂D(Y =argmax(C)∣Z ∈ Im),

confm;D := �̂�D(Z ∣Z ∈ Im)≈
bm+bm+1

2 ,

are the empirical accuracy and average confidence in the bins respec-
tively, and ℙ̂D, �̂�D stand for the usual (counting) sample estimators
of ℙ,𝔼 over the set D. We explicitly highlight the dependence on the
dataset D in all relevant quantities.

With such a binning scheme we can immediately create a reliability
curve by plotting the accuracies against the confidences (or simply
against the centers of the bins), see Figure 1. If the classifier is con-
fidence calibrated and the estimates of accm are good enough (which
depends on the number of samples in the bin), the reliability curve will
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Figure 1. Prediction reliability curve of
a small MLP trained on a synthetic data
set. In the middle we see large devia-
tions from the diagonal

be almost diagonal.

Unfortunately, a lot of important information is hidden in this kind of
visualization. In particular, the weight factorsNm/|D| are not displayed.
In other words, each bin contributes equally to the plot, independently
of how many samples fall into it. This information can be added with
a histogram of the confidences, as shown in Figure 1.

3.2 Other binning schemes

Estimators based on a fixed number of equally sized bins, despite being
simple to implement and intuitively clear, have multiple downsides.
One of them is the previously mentioned loss of information in the
resulting reliability curve. Another one is that they may have a signif-
icant bias, depending on the distribution from which D was sampled.
Examples showing this bias were constructed in [VWA+].

Generally, the estimate of the ECE will heavily depend on the bin-
ning scheme, especially when D is small. Several binning schemes
that are adapted to the data have been proposed in the last years, for
example in [NDZ+] and [DLXS]. If in such an adaptive scheme the
bins have an equal number of samples, the resulting reliability curve
is easier to interpret and there is no need to plot the bin populations
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Figure 2. Same curve as in Figure 1
but with an added histogram of confi-
dences. We see that most of the bins in
the middle are almost empty (in com-
parison) and hence don't contribute
much to the ECE

as done above.

3.3 A note on variance and convergence

Since randomness is involved in the selection of test sets, an analysis
of variance and convergence rate of the estimators is required to
make statistically significant statements. Several methods for such an
analysis are based on the idea of consistency resampling [BS], where
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one assumes that the classifier is strongly calibrated and samples new
labels (not real ground truth labels) from categorical distributions con-
structed from the classifier's outputs. Repeating this proceduremultiple
times allows to compute confidence intervals for the per-bin accura-
cies and hence to assess whether the observed value of the estimator
or the observed reliability curves are consistent with strong calibra-
tion.

While there is a lot more that must be said about the statistical prop-
erties of calibration metrics, it is beyond the scope of this introductory
review.

4 Measuring calibration through simulation

Even if one has an application in which calibration does play a role, it
might still not be clear how relevant it is for an accurate classifier. In
other words, given a classifier that predicts correctly in, say, 90% of the
cases, how important is it for the application that this classifier is also
calibrated and which calibration metrics are the relevant ones?

One way to evaluate this is to identify the quantity one wishes to
optimize and to analyze the effect of miscalibration of the classifier
while maintaining accuracy. This quantity may be the expected gain
in value in a financial application, where a mixed strategy based on
predicted confidences is applied, or the expected percentage of suc-
cessful treatments in a medical application, based on confidences in

10 appliedAI has developed KALE, the cali-
bration game, to illustrate this situation in an
idealized problem of resource management in

healthcare

the diagnosis.10 The confidence-based decision process can then be
simulated and probabilistic classifiers can be compared to each other
directly in an application-centric context.

There are two fundamentally different situations in which this pro-
cedure can be useful: requirements engineering and model evaluation.
Let us view these situations through the eyes of a product owner (PO)
who is to assign the task of developing a probabilistic classifier to a
team of experts. The PO needs to specify in advance howwell the clas-
sifier must perform to be acceptable (including calibration), and she
also needs a method to evaluate the classifier on a test set. A simulated
decision process helps in both situations.

Requirements engineering with fake classifiers. At this stage there is
no model yet and the goal is to understand the minimal requirements
on the model quality needed to reach the application's target perfor-
mance. Having the simulated decision making process at hand, one
could use a fake classifier , i.e. a generator of confidence vectors and
ground truth labels that is not based on actual data (and does not even
take input), but has adjustable accuracy and calibration. Using such
fake classifiers one could simply compute how sensitive the quality
of decision making is to accuracy and calibration without actually
training any models. This is a cheap and efficient method of finding

10 Michael Panchenko
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out which properties of calibration matter in the specific context of
interest. We say more about such fake classifiers in Section 6.

Model evaluation on test sets. Once classifiers have been trained,
accuracy and calibration metrics can be computed on test sets. As
mentioned before, it is often far from trivial to interpret the various cal-
ibration errors when one is concerned with performance in a specific
context. Instead, one could evaluate models using the same simulated
decision process as for requirements engineering, running it on the
test set with the real classifier.

5 Recalibrating

The calibration of a classifier can be improved either by adjusting the
training or modeling, or by recalibrating via post-processing using a
held-out set. Examples of the former include training an ensemble of
models [LPB] or using specialized loss functions [MKS+].

Here we focus on the second approach, i.e. recalibrating with a held-
out set. The practical advantage of these methods is that they can be
applied to any classifier and, by definition, do not require re-training.
Since the classifier itself is not modified in this approach, we can forget
about the actual inputs and directly consider the distribution of confi-
dence vectors obtained on the test set. We are thus concerned with the
problem of having samples of true labels and confidences, following
a miscalibrated distribution Y ,C with C := c(X ), and want to find a
calibration function rθ:ΔK−1→ΔK−1 such that Y ∣rθ(C) is better cal-
ibrated (see Section 1.3 for more details). Note that, as long as one
ensures that for every c ∈ΔK−1 it holds that

argmax(rθ(c))=argmax(c),

then mapping the output confidences with rθ does not have an effect
on the model's accuracy.

There are a number of different methods, parametric and non-para-
metric, for constructing or learning calibration functions. Wewill only
highlight two here: temperature scaling and an extension thereof called
Dirichlet calibration. For a summary of other techniques, see [GPSW,
KPK+].

5.1 Temperature scaling

Temperature scaling was first applied to multi-class problems in
[GPSW]. For concreteness, consider a standard neural network classi-
fier. The idea and implementation are fairly straightforward: scale the
output logits of the network with a learned parameter prior to applying
the sostmax. The parameter is expressed as 1/T and T is called tem-
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perature due to analogies in statistical physics. T can be learned by
minimizing the negative log likelihood (NLL) over the held-out set.
Note that scaling the logits uniformly does not alter the ranking of
predictions, thus accuracy is unaffected by it. Temperature scaling
proposes a calibration function of the form:

rT(c)=σ(((((( log(c)T )))))),

where the logarithm acts component-wise and σ is the sostmax func-
tion, although in implementations the scaling should rather act directly
on the predictor's logits, before the application of the sostmax that con-
verted them to confidences.

Temperature scaling has been empirically shown to be efficient in
reducing the ECE of neural networks. Unfortunately, it may under-
perform in improving overall calibration, e.g. in reducing class-wise
calibration errors. This is where Dirichlet calibration is reported to
perform better

Figure 3. Reliability diagrams of c10_resnet_wide32 on CIFAR-10: (a) confidence-reliability before calibration;
(b) confidence-reliability aster temperature scaling; (c) classwise-reliability for class 2 aster temperature scaling; (d)
classwise-reliability for class 2 aster Dirichlet calibration. Image and description taken from [KPK+]

5.2 Dirichlet calibration

A straightforward extension of temperature scaling is to multiply the
logits by a weight matrixW ∈ℝK×K and to add a bias vector b∈ℝK . In
other words, this extension assumes a calibration function of the form

rW ,b(c)=σ(W ⋅ log(c)+b). (5)

Again, in implementations one should use logits instead of taking the
log of C , in which case the procedure is also known as matrix scaling
(theoretically, the two are equivalent but in practice matrix scaling
performs slightly better, presumably due to rounding errors when cal-
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culating log of sostmax of logits). Equation (5) can be shown to follow
from the assumption that confidences conditioned on ground truth are
distributed with Dirichlet distributions, i.e. that there are K vectors
with positive entries α (k)=�α1

(k), . . . ,αK
(k)� such that for each k ∈{1,.. . ,

K}:

C ∣Y =k ∼ Dir�α(k)�,

hence the name,Dirichlet calibration. This recalibration scheme has
two downsides: it can easily overfit due to the number of parameters
(quadratic in number of classes) and it does not preserve ranking and
accuracy of predictions. The latter might actually not be a problem
as recalibration also has the potential to increase accuracy, especially
if trained to optimize NLL. However, one needs to be more careful
if using a different objective.

In the initial experiments withmatrix scaling in [GPSW] the authors
encountered severe overfitting, even with regularization. However,
with a recently proposed regularization scheme that separately reg-
ularizes off-diagonal elements of W and the intercept b (giving rise
to the name ODIR - off-diagonal and intercept regularization), matrix
scaling outperformed temperature scaling in most cases with up to
100 classes (see [KPK+] for details). Importantly, it improved calibra-
tion not only as measured by ECE but also by class-wise calibration
errors - where temperature scaling performed significantly worse.

6 Fake classifiers

We havementioned that for requirements engineering it may be useful
to create fake confidence vectors and ground truth labels that have a
pre-determined accuracy and calibration. By fake wemean that instead
of being computed by applying a classifier to data, the confidences
and labels are simply sampled from a distribution.

Such fake classifiers are also useful for the evaluation of tools in cali-
bration, like metrics and recalibration algorithms. For metrics, one can
empirically study convergence rates since, typically, for a fake clas-
sifier the true value of a calibration metric is a known integral. Recali-
bration algorithms can be benchmarked with fake classifiers. This is
important since miscalibration can arise in a number of different ways:
classifiers can be overconfident or under-confident in predictions, be
overconfident for some classes and under-confident for others or have
a mixture of different behaviors. To the best of our knowledge, recal-
ibration algorithms have been studied up to now by applying them
to models like deep neural networks trained on selected data sets, like
CIFAR, MNIST and IMAGENET. Fake classifiers enable the analysis of
recalibration for a much more diverse variety of scenarios, and in a
controlled way.
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However, creating fake classifiers where accuracy and calibration
can be adjusted mostly independently of each other is not entirely
trivial. This construction is explained in detail in [PBfD] where the
results of benchmarking several algorithms and metrics will be pre-
sented as well. Accompanying the paper, we will open-source the code
for creating fake classifiers and performing benchmarking as part of
the aforementioned library [PSB] containing general tools for calibra-
tion.

7 Accuracy and calibration

We already mentioned that accuracy and calibration are up to a point
independent from each other. However, for an important special
case, there is a relation between accuracy and ECE. This case is that

11 “Always” means that the confidence c ∗=
max(c(x)) of every prediction y=argmax c(x)

is greater than, resp. lower than, the value
ℙ(Y =y∣c(X)=c ∗)

of always overconfident or under-confident classifiers.11 Since modern
neural networks tend to be always overconfident and ECE is one of
the most widely used calibration metrics, this relation is of practical
importance. In [PBfD], we prove:

LEMMA 1.

i. For always overconfident classifiers, it holds that:

ECE≤1−acc.

ii. For always underconfident classifiers, it holds that:

ECE≤acc.

While the second inequality is not very interesting (for an accurate
classifier it is a very loose bound), the first one is tighter and makes
intuitive sense: an overconfident classifier that is very accurate simply
does not have much room for miscalibration. In fact, a perfectly accu-
rate classifier cannot be overconfident at all - at perfect calibration it
will always predict confidence vectors with 1 at the predicted class and
0 everywhere else. This inequality holds for many neural networks
and shows that it might be enough to only improve accuracy - the
ECE will be automatically small when the accuracy is very high. For
requirements engineering in situations where the ECE is a relevant
metric, this bound should be taken into consideration.
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