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Adversarial training has been shown to improve robustness of neural networks
to certain classes of data perturbations. Despite constant progress, counterat-
tacks appear immediately aster each new method is proposed. This is because
of a lack of bounds on the error that an attack can induce. We review a series
of papers working towards certified error rates for networks using either special
certification training objectives or arbitrary ones, including those employed for
adversarial training.
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From Nov 8, 2021 to Nov 10, 2021, the Simons Institute
conducted the workshop Average-Case Complexity: From
Cryptography to Statistical Learning, in the context of
their semester program Computational Complexity of
Statistical Inference. This post summarizes and extends
parts of [Rag21].

Statistical robustness is concerned with how estimators react to shifts
in data distributions. One of the questions it tries to answer is the
following: If one has a good estimator for a given parametric family,
but it is fitted on data sampled from a distribution “slightly outside”
the family, does the estimator still behave well? In practical applic-
ations, the model is almost never correct, so it is of great interest to
design estimators which are robust in this sense. This is sometimes
called robustness to poisoning (against modification of the training set,
possibly malicious).
In the same spirit as above, “robustness” in supervised learning

refers to the ability to conserve predictive power under different scen-
arios. In some critical applications, neural networks need to be robust
against data specially crasted to fool them at test time, for instance
in autonomous vehicles or intrusion detection. Here we focus on this
case, namely the evaluation on a distribution slightly different from
the training one, sometimes known as adversarial robustness.
Several methods exist to improve test-time robustness, with

adversarial training forming a family of the most popular and successful

1 Since the seminal works on
adversarial attacks [SZS+13] in 2013
and [GSS15] on adversarial training
in 2014 , thousands of papers have
appeared in the field. For a recent
review and taxonomy of the field, we
refer to [BLZ+21].ones.1However, despite their success and that of other heuristics, they

typically lack theoretical guarantees. As a matter of fact, for every
adversarial training technique published in the past years, a counter-
attack has been immediately developed which beats it (see the refer-
ences in [Rag21]).

1 Bounding the maximal error

A sensible path is therefore to avoid a never ending game of cat and
mouse devising heuristic attacks and counterattacks, and instead try
to bound or reduce the maximal expected loss when perturbations to
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2 This usually means allowing per-
turbations of test data up to a mag-

nitude ε>0 in some norm. For vision
tasks, it is natural and convenient to
take l∞: an ε-ball around x contains
all images whose pixels differ at most

ε from those of x.

the test data are allowed in a certain class.2

Bounds on this error can be added as a penalty term to the loss which
directly reduces the maximal error that a class of attacks can achieve.
As we will see below, this technique can also provide upper bounds
on the error during training, cf. the end of Section 3. The additional
term is however at the cost of final predictive power of the model (and,
interestingly, it usually also increases sparsity in the weights).
It is therefore advantageous to compute instead bounds for arbitrary,

powerful networks (known as “verification-agnostic” networks because
they haven't been specifically trained to reduce this error). However,
the methods to do so typically suffer from problems of scalability and
tightness, particularly losing power when large modifications to the
inputs are allowed.
There are three main lines of work pursuing these two goals.
Exact verification falls in the second category, and tries to bound

the exact error of arbitrary (albeit small) networks. In order to do this,
it performs an exhaustive search over the class of allowed perturba-
tions for each input. This is usually done with Satisfiability Modulo
Theory or Mixed Integer Programming formulations and despite there
being several optimizations in the literature, their cost is typically pro-

3 These are on par with some convex
relaxations as SDPs, solved with

interior point methods, see below. hibitive for modern neural networks.3 For this reason, we won't cove
any such techniques in this post.
Convex relaxations of the bound on themaximal error can be used

in either of the two forms mentioned: for post-training bounding or
during training. The idea is to express the maximum error that an
attacker can cause for any given test datum (x, y) as a Quadratic-
ally Constrained Quadratic Program (QCQP), typically a maximization
over a set of allowed perturbations of x with y fixed. Then one uses
linear or semidefinite relaxations to convexify the objective. Linear
Programming (LP) methods scale well but provide certifications which
are typically too loose, and some research shows that there is a fun-
damental gap that cannot be covered with linear relaxations, see e.g.
[RSL18b, Proposition 1] or [SYZ+20]. On the other hand Semi-Def-
inite Programs (SDPs) provide tighter bounds but scale poorly when

4 Specifically, for n nodes, 𝒪(n6) in
runtime and 𝒪(n4) in memory, see

refs [41, 60] in [DDK+20].

using off-the-shelf interior point methods.4 Recent work leverages dual
formulations of the SDPs achieving linear memory cost and running
times, while still providing reasonably good bounds, see Section 5.
Finally, randomized smoothing belongs in a different category,

since it is based on ideas in differential privacy and randomizes the
outputs to improve robustness. We will not cover any such approach
here.
We focus on convex relaxations, and review a series of papers using

SDPs both for certification of pre-trained networks and penalised
training.

2 The setting

For simplicity, we discuss binary classification of images, but the case
of multiple classes is handled similarly and other data domains are also
possible.
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We allow a class of data manipulations of the form “change each
pixel of an image by at most 10/255ths”. More precisely, an ℓ∞-admiss-
ible attack is of the following form: given a data domain ℝd and
labels 𝒴= {0,1} we allow an attacker A:ℝd ×𝒴→ ℝd to modify any
coordinate of x ∈ ℝd by at most a fixed amount ε > 0, i.e. we allow
any x̃ =A(x,y) with ‖x − x̃‖∞ < ε . The goal of the attacker is to make
a classifier h: ℝd → [0, 1]2 produce an output h(x̃) which maximises

5 This cumbersome choice of
subindices subsumes the two possible
situations for misclassification into
one when subindices start at 1 and
𝒴= {0,1}. While in the two-dimen-
sional case the margin can always
be reduced to an expression solely
dependent on the confidence in the
correct class, for higher-dimensional
certification it is common to define
the margin as a function of two
selected classes. This notation then
generalizes to such cases.

the margin:5

my(x̃)≔h2−y(x̃)−h1+y(x̃), (1)

where the two outputs h1,h2 are the confidences for classes 0 and 1
respectively. A positive margin is a succesful attack. The attacker has
access to all information about the network and data distribution (this
full-information attack model is sometimes calledwhite-box attack).
We work with 2-layer networks of the form

h(x)≔Vσ(Wx), (2)

6 The limitation to two layers is only
for simplicity. All but the first of
the papers reviewed generalize to an
arbitrary number of them.

with V ∈ℝ2×d1,W ∈ℝd1×d and non-linearity σ .6

Now, given a sample (x,y) consider the worst possible modifica-
tion of x within ε distance, leaving the label untouched:

δy⋆(x)≔ argmax
‖x−x̃‖∞⩽ε

my(x̃). (3)

Note that this maximization depends on h and is typically intractable.
The robust error is the maximal expected loss over data within an ε-
ball around “true” data:

Erobust(h)≔𝔼X ,Y[l(h(δY⋆(X )),Y )],

with l(ŷ,y) being the 0-1 loss 𝕀(ŷ≠y) in our case. The corresponding
sample quantity, which we also name “robust error”, is the maximal
proportion of misclassified test data, under ℓ∞-attacks of magnitude
ε >0:

Êrobust(h)≔
1
n �
i=1

n

l(h(δyi⋆ (xi)),yi).

With 0-1 loss, the argmax in δyi
⋆ is not necessary to compute this error,

since only the sign of the margin matters: If the quantity

opt(x,y)≔ max
‖x−x̃‖∞⩽ε

my(x̃) (4)

is negative, the network's confidence in the correct class will be max-
imal in the whole ε-neighbourhood around x and l(h(δy⋆(x)),y)=0 for
this sample. In other words, one can count the number of points in
which opt is positive to compute the robust error:

Êrobust(h)=
1
n |{xi:opt(xi,yi)>0}|. (5)

Certified error rates for neural networks 3



If opt(x, y)⩽ 0 one says that (x, y) is certified (or rather ℓ∞, ε-certi-
fied): no admissible attack A can deterministically fool the classifier

7 In Section 5 we will see a method
that generalizes to arbitrary quadratic

certification functions. for this sample. We call m a certification function.7

The main difficulty for certification is the maximization (4), which
in the works reviewed here is tackled with convex relaxations. One
problem arising from this approach is evaluating the tightness of the
bound because the exact maximization is typically intractable. As a
proxy, a lower bound on opt(x,y) is obtained, e.g. with an adversarial8 The more powerful the attack, the

tighter this lower bound will be.
attack like Projected Gradient Descent (PGD, [MMS+18]).8

A word on the allowed threat model

Working within the framework of ℓ∞ or, more generally, ℓp attacks
is both convenient from a mathematical point of view, and of interest
since many of them try to modify inputs in ways imperceptible to
the human eye, a characteristic well modeled by small ℓp balls around
samples. But it is important to note that it ignores more natural and
osten very effective manipulations of the empirical data distribution
which can be used to force misclassifications.

One could for instance sample new images from the same source
as the training data, obtaining qualitatively similar data on which the
classifier fails osten due to the network having overfitted to particulars

9 The field of “domain generalization”
tries to devise methods that learn

from multiple datasets pertaining to
the same task but potentially obtained

independently. of the specific training set.9

The class of ℓp-bounded attacks also does not cover realistic attack
scenarios like adversarial patches, which preserve the semantics of an
image with alterations which, despite being obvious to the eye, might

10 Of course, one can design counter-
measures against these, but, as men-

tioned above, certification against
broad classes of attacks is in general

more desirable.

not stand out as an attack to the untrained observer.10

3 Certified robustness via gradient bounds

[RSL18a] studies the two different goals described above:

1. To compute bounds on the maximal error that an attacker can
cause for fixed weights V ,W of h (see (2)).

2. To learn new weights V ,W for h which reduce this maximal
error.

The authors circumvent the problem of computing (5) with a tractable
upper bound

U (m,x,y)⩾ l(h(δy⋆(x)),y),

which avoids the maximization (3). They define theU -certified error11 The corresponding sample
quantity is then the fraction of points

that can be potentially attacked.
to be11

Ecert≔𝔼X ,Y[𝒰(m,X ,Y )>0].

By construction, no ℓ∞-attack can attain an error higher than the cer-
tified error. Also, because it is a pointwise bound, wherever U =0, the
integrand in the robust error must be 0 as well.
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The functionU is chosen to be a convex relaxation of (3) calledMAX-
GRAD. The name comes from the following bound on the margin (1):

my(x̃) = my(x)+�
0
1

∇my(t x̃+ (1− t)x)⊤ (x − x̃)dt

⩽ my(x)+ ε max
‖x̃−x‖<ε

‖∇my(x̃)‖1

⩽ my(x)+ ε max
s∈[−1,1]d1
t∈[−1,1]d

1
2 t

⊤W ⊤ (V1−V2)⊙ (1+ s),

where ⊙ denotes the Hadarmard product and the last inequality is
valid in the case of two-layer networks with ReLU activations (see

12 The number of two layers (one
hidden and a linear mapping for the
outputs) is required for the argument
in MAXGRAD, but the activations can
be swapped for any other with uni-
formly bounded derivative.

[RSL18a, Eqs. (5) to (7)] for the details).12 The final right hand side is
a non-convex quadratic maximization problem, which is relaxed to an
SDP roughly as follows. First introduce new variables a= (1, t, s)⊤and
M , a matrix which is a function of V1 −V2 and W . In the resulting
problem, the new variable a appears as a rank-one matrix P ≔ a a⊤ ∈
ℝ(m+d+1)×(m+d+1). This is relaxed as P =AA⊤ for some full-rank A,
or equivalently, P ≽ 0 (see [RSL18a, Eqs (6) to (10)] for details). One
obtains the SDP:

my(x)+
ε
4 max

P≽0
diag(P )≼1

⟨M,P⟩, (6)

which can be solved with off-the-shelf tools to obtain an upper bound
denotedMaxGrad(m,x,y).

Limitations

The MAXGRAD method has three major disadvantages:

1. It is limited to 2-layer networks, a problem solved later in
[RSL18b], see Section 4.

2. It has a very high computational cost, manageable only for very
small networks, see Note 4.

3. It can yield very loose bounds. As a matter of fact MAXGRAD
is effectively vacuous on adversarially trained networks. For a
very small ε the quantityMaxGrad(m,x,y) is zero for less than

13 In the literature this is osten
phrased in reverse as the certified
error being greater than 90%, which,
as defined above, is the fraction of the
points where MaxGrad(m,x,y)>0.10% of the data.13

Certified robustness via a new objective

One way to mitigate the third problem is to add MAXGRAD to the
training objective, i.e. to set

(V̂ ,Ŵ )∈argmin
V ,W

�
i=1

n

l(h(xi),y)+λ max
P≽0

diag(P )≼1

⟨M,P⟩,

Certified error rates for neural networks 5



with λ> 0 a regularization hyperparameter. Because computing the
gradient of the above requires the expensive operation of solving the
inner maximum, the authors use its dual formulation, which provides
a cheaper upper bound for the primal, [RSL18a, Eq. (15)].

Importantly, because every solution of the dual bounds the optimum
of the primal from above, at every iteration of the optimization one
has an upper bound on the certified error.

By penalising the loss, what was a vacuous upper bound becomes
non-vacuous in practice and a general strategy emerges: in order to
obtain certified defenses, it is possible to train networks by minimizing a
loose but tractable upper bound for the worst-case loss.

Subsequent work building upon this paper improves the certified
error for some examples. However, the final real-world performance of
these networks on unaltered test samples remains subpar, something
that motivates an interest in certifiers which operate on certification-
agnostic networks.

4 Certified robustness with SDP

The previous technique changes the objective and obtains new para-
meters which are certified to have at most some given error. But what
about arbitrary, or “foreign”, networks (i.e. not robustly trained)? We
have seen that the gradient bound is mostly ineffective. Is it possible
to improve it?

[RSL18b] does so with a direct computation of the maximummargin
instead of a first-order approximation. The method also generalizes to
any number of layers (ignoring computational cost), but we leave this

14 One aspect of the generalization is
the need to add bounds on the output
of each layer analogous to those for

the attack. The authors use very
rough ones based on interval arith-

metic, but suggest that they could be
made tighter for added performance. out for simplicity.14

Fix some input (x,y) and let x̃ =A(x,y) be an attack. Recall that we
want to bound the margin

my(x̃) ≔ h2−y(x̃)−h1+y(x̃)
= (V2−y−V1+y)x1,

where x1= σ(Wx̃), and V is the final linear layer of the network, i.e.
we want, cf (4):

opt(x,y) = max
x̃∈ℝd

(V2−y−V1+y)⊤x1

s.t. x1=σ(Wx̃), (ReLU)
and ‖x − x̃‖∞ ⩽ ε. (Attack)

Note how the non-linear activation function enters the problem as a
constraint. The idea to make the maximization tractable is to write it
as a quadratic problem, then relax the non-convex constraints into an
SDP.

6 Miguel de Benito Delgado



The key insight enabling this is that each ReLU activation zj =
max ((Wx)j,0) in the network can be expressed as the quadratic con-

15 Later work has derived similar
quadratic formulations for the sig-
moid, tanh, leaky ReLU and other
activations [FMP20].

straint:15

zj ⩾0, zj ⩾ (Wx)j,zj (zj − (Wx)j)=0, ∀j.

The same applies to ℓ∞ bounds on the perturbed inputs: lj ⩽xj⩽uj for
all j and given lj,uj ∈ℝ, is equivalent to (xj − lj) (xj −uj)⩽0 for every
j , or

xj
2⩽ (lj +uj)xj − lj(uj), ∀j.

With this, one can rewrite the above into the following quadratic, non- 16 Comparison of vectors is done
coordinate-wise.

convex problem:16

opt(x,y) = max
x,z∈ℝd

V ⊤ z (7)

s.t. z⩾0, z⩾Wx, z⊙ z= z⊙Wx, (ReLU)
and x ⊙x ⩽ (l+u)⊙x− l⊙u. (Attack)

The trick to rewrite this as an SDP is to introduce new variables a= (1,
x, z)⊤ and P ≔aa⊤. With “symbolic indexing” P[⋅] one can write

P =(((((((((((((((
(((((((((
(
( P[1] P[x⊤] P[z⊤]
P[x] P[xx⊤] P[xz⊤]
P[z] P[zx⊤] P[z z⊤] )))))))))))))

))))))))))))
)
,

17 Note that, as before, the key modi-
fication is the convexification of
the constraint of having rank one,
P =aa⊤, via the constraint P =AA⊤

for full-rank A, or equivalently, P ≽0.

and relax the problem above as:17

opt� (x,y) = max
P≽0

V ⊤P[z] (SDP)

s.t. P[z]⩾0,
P[z]⩾WP[x],
diag(P[z z⊤])=diag(WP[xz⊤]),

and diag(P[xx⊤])⩽ (l+u)⊙P[x]− l⊙u.

Using off-the-shelf solvers, the resulting SDP certifier, SDP-CERT,
yields non vacuous bounds for several networks trained with standard
adversarial methods, in contrast to MAXGRAD (albeit only for small
networks for which the optimization is possible). The intuition behind
this is that MAXGRAD is a linear approximation bounding the gradient
uniformly, whereas SDP-CERT is a relaxation of the true quadratic
problem of computing the worst possible margin opt(x,y).

SDP-CERT is also shown to provide better bounds than methods
using linear programs, both empirically and theoretically. The latter
statement is the content of [RSL18b, Proposition 1], which proves a
dimension-dependent gap between LP and SDP bounds of order d�

18 Roughly, for networks of m
hidden nodes and dimension d , with
high probability δ̃y ,LP

⋆ =Θ(md ) and
δ̃y ,SDP

⋆ =Θ(m d� +d m√ ).for random networks.18

Certified error rates for neural networks 7



Limitations

Like MAXGRAD, SDP-CERT has several drawbacks. First, the bounds
are loose: the strongest known attacks attain errors which are signi-
ficantly lower. This is due to points where the attack fails but also
does the certification. Upon close inspection it can be seen that the
distribution of margins for these is close to 0, i.e. the attacks were
“almost” succesful, see Figure 1.

Second, the use of an SDP and off-the-shelf interior point methods
limits applications to networks of at most a few thousand nodes. The
next paper we study addresses this issue taking ideas from the SDP
literature and achieves linear running times.

5 Efficient SDP certification

To overcome the problem of scalability, [DDK+20] work with the
dual of the SDP formulation and express it as a maximum eigenvalue
problem with linear constraints. In doing so, they generalize the work
of Section 4 without compromising the tightness of the bound and can
extend their method to any quadratically constrained quadratic pro-
gram.

An important contribution is that the optimization can be done with
first-order methods whose subgradient computations can be carried
out as forward and backward passes on the network, so that the per-
iteration complexity is that of a constant number of such passes and
can be implemented using standard frameworks like TENSORFLOW,
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Figure 1. [RSL18b, Figure 3] Histogram
of PGD margins for (a) points that are
certified by the SDP and (b) points that
are not certified by the SDP.

PYTORCH or JAX. This allows scaling up the size of the networks one
order of magnitude up to 20K nodes and 2M parameters, which is cer-
tainly far from the size of state of the art models in vision and language,
but can still be easily encountered in applications.

As before we want to compute opt(x,y), but after deriving the convex
relaxation (SDP), we move on to the dual problem, and express it as
a maximum eigenvalue problem.

19 As in Section 4, the method is
presented for an arbitrary number of
layers, but we stay in a simpler set-

ting for clarity.

To this end, we first write the Lagrangian for problem (7).19 Recall
that the linear and quadratic constraints for a ReLU activation are
z⩾0, z⩾Wx and z ⊙ (z −Wx)⩽ 0 (where we write the last one as
an inequality in view of the Lagrangian) and the quadratic constraints
for an ℓ∞ attack, x ⊙x ⩽ (l +u)⊙x − l ⊙u, for given bounds l,u. The
Lagrangian of the constraints for this layer is then

ℒ̃(x,z,λ) ≔ −z⊤λa
+(Wx− z)⊤λb
+z⊙ (z−Wx)⊤λc
+(x ⊙x − (l+u)⊙x+ l⊙u)λd .

Rearranging terms, adding the objective (V2−y − V1+y)⊤ x 1 and
renaming all network variables x,z as x , one obtains a full Lagrangian

ℒ(x,λ)≔ c(λ)+x⊤g(λ)+ 1
2 x

⊤H(λ)x,

8 Miguel de Benito Delgado



where all the coefficients c, g,H are affine functions of λ, [DDK+20,
Eqs. (2) to (3)]. Interestingly, because g and H are the gradient and
Hessian of ℒ, and all they involve is forward passes and element-wise
operations, they can be computed with automatic differentiation using
all common ML frameworks.

A standard duality argument provides:

opt(x,y)⩽min
λ⩾0

max
l⩽x⩽u

ℒ(x,λ),

which in [DDK+20, Proposition 1, p. 5] is transformed into the min-
imization

min
λ⩾0,κ⩾0

f (λ,κ), (SDP-FO)

with λ∈ ℝ and κ∈ ℝ1+N , N being the sum of the dimensions of all
layers (input and hidden in our setting), and with the objective given
by

f (λ,κ)≔ c(λ)+ 1
2 𝟏⊤ [diag(κ)−λmin− (Z )𝟏]+,

where λmin− is the negative part of the smallest eigenvalue of a certain
20 See [DDK+20, Appendix A.4] for
the proof that optimizing this new
problem is equivalent to SDP-CERT.matrix Z =Z (g,H).20

The problem (SDP-FO) can be solved efficiently with a first-order
projected subgradient method thanks to automatic differentiation and
iterative computation of the eigendecomposition of Z . Good choices
for initialization, regularization and learning rates improve conver-
gence rates [DDK+20, Section 5.3].

The authors test SDP-FO in networks bothwith a verification penalty
term in the loss and without it, but their main result is its effective-
ness on the latter. For these verification-agnostic networks, the dual
form provides a bound which is reasonably tight (wrt. a proxy lower
bound obtained with PGD, as described in Section 2) in many cases
while enabling verification of larger models.

An additional positive aspect of the method is that it can handle
quadratic certification functions. The margin (1) for adversarial robust-
ness is linear, but the authors show an example of robustness of VAEs
to perturbations in latent space where the certification function is
given by the (quadratic) reconstruction error [DDK+20, Eq. (7)]. Such
quadratic objectives cannot be directly plugged into LP or exact solvers
without relaxing them first.

Limitations

Despite a linear running time, the bounds provided by SDP-FO lose
tightness as the network size increases. This can be seen in Figure 2,
which shows the accuracy under an attack using Projected Gradient
Descent and the one from the SDP-FO upper bound. The broader the
gap, the worse the performance of the certifier.

Certified error rates for neural networks 9



Figure 2. Data from [DDK+20,
Table 1]. Accuracy for different

models, usingMNIST and CIFAR-
10, evaluated on the same test set
as given by: as-is (nominal), PGD
attack, SDP-FO certifier, and the

popular LP certifier [Ehl17].
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6 Open questions in relaxed certification

Besides the obvious problem of scalability, several issues remain
untackled in the literature on convex relaxations of the maximal
expected error.
It is necessary to understand why networks trained with the cer-

tification penalty are in general less performant, as well as the role
that architecture and initialization play in this matter. There is no
characterization of the effective hypothesis class that one minimises
over with certified training. Interestingly, these networks show higher
sparsity, a phenomenon for which there is no explanation yet. We
discuss the “robustness tradeoff” in a future post.
From a technical point of view, tighter relaxations are required at

larger network sizes. A clear candidate for improvement is the com-
putation of better bounds for the intermediate layers in the case of21 This refers to a set of constraints

required for each additional layer. more than two layers.21 Finally it would be interesting to see adop-
tion of techniques from the SDP community beyond the 1st order dual
method of Section 5.
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